Ответ:
R=5 см
Объяснение:
маємо коло , дві паралельні хорди 6 см і 8 см відстань між хордами 7 см , треба знайти радіус кола Рішення: Через центр 0 проведемо діаметр , який пересіче навпіл малу і велику хорди. З центра 0 проведемо до точок перетину хорд з колом два радіуси і отримаємо два прямокутних трикутника. Щоб знайти радіуси , які є діагоналями цих трикутників, треба розвязати систему. Нам відомо, що відстань між хордами 7 см і не відомо , яка відстань центру кола від хорд. Позначимо одну відстань від центру кола до малої хорди через Х, тоді друга відстань від центра до великої хорди буде 7-Х. складемо систему : R1=R2
R1²=Х²+3² R2²=(7-Х)²+4² х²+9=49-14Х+Х²+16 14Х=56 Х=4
тобто діаметр , або 2 радіуси роздвлили відстань між хордами на 3 і 4 см. тепер ми знайдемо радіус , використовуючи теорему Піфагора, R²=4²+3²=25√=5