ОДЗ:
0} \atop {x+1>0}} \right." alt="\left \{ {{x^2+64 >0} \atop {x+1>0}} \right." align="absmiddle" class="latex-formula">
-1}} \right." alt="\left \{ {{x\in (-\infty;+\infty)} \atop {x>-1}} \right." align="absmiddle" class="latex-formula"> x ∈(-1;+∞)
![log_{14}(x^2+64)+log_{4}(x+1)+2 log_{14}(x^2+64)+log_{4}(x+1)+2](https://tex.z-dn.net/?f=log_%7B14%7D%28x%5E2%2B64%29%2Blog_%7B4%7D%28x%2B1%29%2B2%20%3C0)
![log_{14}(x^2+64)+log_{4}(x+1)+log_{4}16 log_{14}(x^2+64)+log_{4}(x+1)+log_{4}16](https://tex.z-dn.net/?f=log_%7B14%7D%28x%5E2%2B64%29%2Blog_%7B4%7D%28x%2B1%29%2Blog_%7B4%7D16%20%3C0)
![log_{14}(x^2+64) +log_{4}16(x+1) log_{14}(x^2+64) +log_{4}16(x+1)](https://tex.z-dn.net/?f=log_%7B14%7D%28x%5E2%2B64%29%20%2Blog_%7B4%7D16%28x%2B1%29%20%3C0)
![\frac{log_{4}(x^2+64)}{log_{4}14} +log_{4}16(x+1) \frac{log_{4}(x^2+64)}{log_{4}14} +log_{4}16(x+1)](https://tex.z-dn.net/?f=%5Cfrac%7Blog_%7B4%7D%28x%5E2%2B64%29%7D%7Blog_%7B4%7D14%7D%20%2Blog_%7B4%7D16%28x%2B1%29%20%3C0)
0" alt="log_{4}14 >0" align="absmiddle" class="latex-formula">
![log_{4}(x^2+64)+ log_{4}14\cdot log_{4}16(x+1) log_{4}(x^2+64)+ log_{4}14\cdot log_{4}16(x+1)](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%2B%20log_%7B4%7D14%5Ccdot%20log_%7B4%7D16%28x%2B1%29%20%3C0)
![log_{4}(x^2+64) < - log_{4}14\cdot log_{4}16(x+1) log_{4}(x^2+64) < - log_{4}14\cdot log_{4}16(x+1)](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%20%3C%20-%20log_%7B4%7D14%5Ccdot%20log_%7B4%7D16%28x%2B1%29)
Может все-таки опечатка и в первом логарифме основание 4:
![log_{4}(x^2+64)+log_{4}(x+1)+2 log_{4}(x^2+64)+log_{4}(x+1)+2](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%2Blog_%7B4%7D%28x%2B1%29%2B2%20%3C0)
![log_{4}(x^2+64)+log_{4}(x+1)+log_{4}16 log_{4}(x^2+64)+log_{4}(x+1)+log_{4}16](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%2Blog_%7B4%7D%28x%2B1%29%2Blog_%7B4%7D16%20%3C0)
![log_{4}(x^2+64) +log_{4}16(x+1) log_{4}(x^2+64) +log_{4}16(x+1)](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%20%2Blog_%7B4%7D16%28x%2B1%29%20%3C0)
![log_{4}(x^2+64) log_{4}(x^2+64)](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%20%3C-log_%7B4%7D16%28x%2B1%29)
![log_{4}(x^2+64) log_{4}(x^2+64)](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%20%3Clog_%7B4%7D%2816%28x%2B1%29%29%5E%7B-1%7D)
![log_{4}(x^2+64) log_{4}(x^2+64)](https://tex.z-dn.net/?f=log_%7B4%7D%28x%5E2%2B64%29%20%3Clog_%7B4%7D%5Cfrac%7B1%7D%7B16%28x%2B1%29%7D)
Логарифмическая функция с основанием 4 возрастающая, поэтому
![x^2+64 x^2+64](https://tex.z-dn.net/?f=x%5E2%2B64%20%3C%5Cfrac%7B1%7D%7B16%28x%2B1%29%7D)
![x^2+64 -\frac{1}{16(x+1)} x^2+64 -\frac{1}{16(x+1)}](https://tex.z-dn.net/?f=x%5E2%2B64%20-%5Cfrac%7B1%7D%7B16%28x%2B1%29%7D%20%3C0)
![\frac{16\cdot (x+1)\cdot (x^2+64)- 1}{16(x+1)} \frac{16\cdot (x+1)\cdot (x^2+64)- 1}{16(x+1)}](https://tex.z-dn.net/?f=%5Cfrac%7B16%5Ccdot%20%28x%2B1%29%5Ccdot%20%28x%5E2%2B64%29-%201%7D%7B16%28x%2B1%29%7D%20%3C0)
![\frac{16x^3+16x^2+1024x+1024- 1}{16(x+1)} \frac{16x^3+16x^2+1024x+1024- 1}{16(x+1)}](https://tex.z-dn.net/?f=%5Cfrac%7B16x%5E3%2B16x%5E2%2B1024x%2B1024-%201%7D%7B16%28x%2B1%29%7D%20%3C0)
![\frac{16x^3+16x^2+1024x+1023}{16(x+1)} \frac{16x^3+16x^2+1024x+1023}{16(x+1)}](https://tex.z-dn.net/?f=%5Cfrac%7B16x%5E3%2B16x%5E2%2B1024x%2B1023%7D%7B16%28x%2B1%29%7D%20%3C0)
Решаем методом интервалов:
нули числителя: х ≈ -0,999
нули знаменателя: х =-1
Отмечаем эти точки на ОДЗ и расставляем знаки:
(-1) __-_ (-0,999) __+__
О т в е т. (-1;≈ -0,999)