Известно, что x^2 + xy + y^2 = 4, x^4 + x^2*y^2 + y^4 = 8. Нужно найти x^6 + x^3*y^3 +...

+785 голосов
3.1m просмотров

Известно, что x^2 + xy + y^2 = 4, x^4 + x^2*y^2 + y^4 = 8. Нужно найти x^6 + x^3*y^3 + y^6. Помогите пожалуйста


Алгебра (13 баллов) | 3.1m просмотров
Дано ответов: 2
+47 голосов
Правильный ответ

image\left\{\begin{array}{c}(x^2 + y^2) + xy = 4\\(x^2 + y^2)^2-(xy)^2 = 8\end{array}\right.=>\\ \left\{\begin{array}{c}(x^2 + y^2) + xy = 4\\((x^2 + y^2)-(xy))((x^2 + y^2)+(xy)) = 8\end{array}\right.=>\left\{\begin{array}{c}(x^2 + y^2) + xy = 4\\(x^2 + y^2)-(xy) = 2\end{array}\right.=>" alt="\left\{\begin{array}{c}x^2 + xy + y^2 = 4\\x^4 + x^2*y^2 + y^4 = 8\end{array}\right.=>\left\{\begin{array}{c}(x^2 + y^2) + xy = 4\\(x^2 + y^2)^2-(xy)^2 = 8\end{array}\right.=>\\ \left\{\begin{array}{c}(x^2 + y^2) + xy = 4\\((x^2 + y^2)-(xy))((x^2 + y^2)+(xy)) = 8\end{array}\right.=>\left\{\begin{array}{c}(x^2 + y^2) + xy = 4\\(x^2 + y^2)-(xy) = 2\end{array}\right.=>" align="absmiddle" class="latex-formula">

imagex^6+y^6=27-9=18=>\\ =>x^6 + x^3*y^3 + y^6=x^6+y^6+(xy)^3=18+1^3=19" alt="\left\{\begin{array}{c}(x^2 + y^2) = 3\\(xy) = 1\end{array}\right.\\ 27=3^3=(x^2 + y^2) ^3=x^6+3x^4y^2+3x^2y^4+y^6=x^6+y^6+3(xy)^2(x^2+y^2)=x^6+y^6+3*1^2*3=x^6+y^6+9=>x^6+y^6=27-9=18=>\\ =>x^6 + x^3*y^3 + y^6=x^6+y^6+(xy)^3=18+1^3=19" align="absmiddle" class="latex-formula">

Ответ: 19

(11.3k баллов)
+56 голосов

Решение приложено

-------------------------------------------------------------------------------------------

(25.7k баллов)