Помогите пожалуйста !!! Решите уравнение 3cos^2x+7sin^2x+8cos(x-3pi/2)=0. Укажите его...

+504 голосов
3.3m просмотров

Помогите пожалуйста !!! Решите уравнение 3cos^2x+7sin^2x+8cos(x-3pi/2)=0. Укажите его корни лежащие в промежутке [-3pi/2;3pi/2].Ответ: x=(-1)^n pi/6+pin, n пренадлежит Z; x1= -7pi/6; x2=pi/6; x3= 5pi/6​


Алгебра (15 баллов) | 3.3m просмотров
Дан 1 ответ
+53 голосов
Правильный ответ

Ответ:

Объяснение:

1)\\3*cos^2x+7*sin^2x+8*cos(x-\frac{3\pi }{2})=0\\ 3*(1-sin^2x)+7*sin^2x+8*cos(\frac{3\pi }{2}-x)=0\\3-3*sin^2x+7*sin^2x+(-8*sinx)=0\\ 3+4*sin^2x-8*sinx=0\\4*sin^2x-8*sinx+3=0

Пусть sinx=t     |t|≤1   ⇒

4t^2-8t+3=0\\D=16;\sqrt{D}=4\\ t_1=sinx=1,5\notin\\t_2=sinx=0,5\\x=(-1)^n\frac{\pi }{6} +\pi n,n\in \mathbb Z.\\2)\\-\frac{3\pi }{2}

(255k баллов)
+100

Ура я решила дискременант! Но я не понимаю х-3pi/2 как решить ?

+79

Извините, что так много проблем. Просто хочется не списать, а понять. Может что-то с программой не то?

+158

Интересно, должно быть только решение.

+87

У меня так $$ \begin {lgathered}\\ потом решение и опять \\

+191

У вас должно быть видно чёткое решение, без begin {lgathered}.