0\ \ pri\ \ x\in R\ ,\ tak\ kak\ \ D/4=-8lne=1\\\\\\znaki\ y':\ \ \ ---(3)+++\\{}\qquad \qquad \qquad \searrow \ \ (3)\ \ \nearrow \\{}\qquad \qquad \qquad \qquad min\\x_{min}=3\ \ ,\\\\y_{min}=y(3)=log_4(9-18+17)=log_48=log_{2^2}2^3=\dfrac{3}{2}=\boxed {\ 1,5\ }" alt="y=log_4(x^2-6x+17)\\\\y'=\dfrac{2x-6}{(x^2-6x+17)\cdot ln4}=\dfrac{2(x-3)}{(x^2-6x+17)\cdot ln4}=0\ \ \ \to \ \ \ x=3\ , \\\\\\x^2-6x+17>0\ \ pri\ \ x\in R\ ,\ tak\ kak\ \ D/4=-8lne=1\\\\\\znaki\ y':\ \ \ ---(3)+++\\{}\qquad \qquad \qquad \searrow \ \ (3)\ \ \nearrow \\{}\qquad \qquad \qquad \qquad min\\x_{min}=3\ \ ,\\\\y_{min}=y(3)=log_4(9-18+17)=log_48=log_{2^2}2^3=\dfrac{3}{2}=\boxed {\ 1,5\ }" align="absmiddle" class="latex-formula">