Решив графически уравнение 4-√x+1 = log₂x , укажите промежуток, содержащий его корень.

+577 голосов
6.5m просмотров

Решив графически уравнение 4-√x+1 = log₂x , укажите промежуток, содержащий его корень.


Математика | 6.5m просмотров
Дан 1 ответ
+116 голосов

Ответ: 1 решение на x∈(3;4)

Пошаговое объяснение:

Одз : x>0

4-√(x+1) = log(2; x)

На рисунке  построены графики 4-√(x+1) и   log(2; x)

Из геометрический соображений, по построению данных графиков видно, что они пересекаются в одной точке.

Пусть : y(x) =log(2;x) +√(x+1) -4

Заметим, что y(3) = log(2;3) +√4-4 =log(2;3) - 2 = log(2;3) -log(2;4) <0</p>

y(4) = log(2;4) +√5 -4 = √5 -2 > 0 , таким образом из видов графиков функций видно, что решение единственно и лежит на промежутке:

x∈(3;4)

(11.7k баллов)