znanija.com/task/37795520
Решить уравнение sin(8πx)+1 = cos(4πx)+ sqrt(2)*cos(4πx - π/4)
Ответ: 1/8 + n/2 , n∈ ℤ ; x = ± 1/12 +k /2, k∈ ℤ
Объяснение:
sin2α =2sinα*cosα ; *cos(α - β )= cosα*cosβ ; sin(π/4)*cos(π/4) = 1 /√2 .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sin(2*4πx) + 1 = cos(4πx)+ √2*cos(4πx - π/4) ;
2sin(4πx)*cos(4πx) +1 = cos(4πx)+√2*(cos(4πx)*cos(π/4) +sin(4πx)*sin(π/4)) ;
2sin(4πx)*cos(4πx) +1 = cos(4πx)+√2(cos(4πx)*1/√2 +sin(4πx)*1/√2) ;
2sin(4πx)*cos(4πx) +1 = cos(4πx) + cos(4πx) +sin(4πx) ;
2sin(4πx)*cos(4πx) -2cos(4πx )+ 1- sin(4πx) = 0 ;
2sin(4πx)*cos(4πx) - 2cos(4πx )+ 1- sin(4πx) = 0 ;
2cos(4πx )*(sin(4πx) -1) - (sin(4πx) -1) = 0 ;
2(sin(4πx) -1)* (cos(4πx) -1/2 ) = 0 ;
а)
sin(4πx) -1 = 0
sin(4πx) =1 ;
4πx = π/2 +2πn , n∈ ℤ ;
x = 1/8 + n/2 , n∈ ℤ
б)
cos(4πx) -1/2 =0 ;
cos(4πx) = 1/2 ;
4πx = ± π/3 +2πk , k∈ ℤ ;
x = ± 1/12 +k /2, k∈ ℤ