Пожалуйста Помогите срочно! 1. Дан цилиндр, высота которого равна 8 и радиус основания...

+397 голосов
639k просмотров

Пожалуйста Помогите срочно! 1. Дан цилиндр, высота которого равна 8 и радиус основания - 13. найдите площадь осевого сечения, площадь полной поверхности и объём цилиндра. 2. Найти площадь осевого сечения, площадь полной поверхности и объём конуса, образующая которого равна 13+6, радиус основания - 8.


Геометрия (16 баллов) | 639k просмотров
Дан 1 ответ
+125 голосов

Задание 1.

(Смотри вложение 1 )

Осевым сечением цилиндра является прямоугольник.

Формула площади прямоугольника: S = a*b , где

а - одна сторона

b - другая сторона

Для нашего прямоугольника высота цилиндра = стороне а, а диаметр ( 2 радиуса) = стороне b. Получается S = 8*26 = 208 см²

Формула площади полной поверхности цилиндра: S = 2\pi R^{2} + \pi Rh, где

2πR² - площадь оснований

πRh - площадь боковой поверхности

У нас всё известно ⇒ подставляем значения в формулу

S = 2\pi (13)^{2} + \pi*13*8 = 338\pi + 104 \pi = 442\pi см²

Формула объёма цилиндра: V = \pi R^{2}h , где

πR² - площадь основания

h - высота

У нас всё известно ⇒ подставляем значения в формулу

V = \pi (13)^{2}*8 = 1352\pi см³

Задание 2.

(Смотри вложение 2 )

Осевым сечением конуса является треугольник.

Формула площади треугольника: S = \frac{1}{2} *a*h , где

а - основание

h - высота

Для нашего прямоугольника высота конуса = высоте сечения, а диаметр ( 2 радиуса) = основанию . Получается

S = \frac{1}{2} *8*2*19 = 152 см²

Формула площади полной поверхности конуса: S = \pi R^{2} + \pi RL, где

πR² - площадь основания

πRL - площадь боковой поверхности

У нас всё известно ⇒ подставляем значения в формулу

S = \pi (8)^{2} + \pi*8*19 = 64\pi + 152 \pi = 216\pi см²

Формула объёма конуса: V = \frac{1}{3} \pi R^{2}h , где

πR² - площадь основания

h - высота

С помощью осевого сечения найдём высоту

По т. Пифагора:

h = \sqrt{19^{2}-8^{2} } = \sqrt{(19-8)(19+8)} = \sqrt{11*27} = \sqrt{9*11*3} =3\sqrt{33}

Теперь у нас всё известно ⇒ подставляем значения в формулу

V = \frac{1}{3} \pi (8)^{2}* 3\sqrt{33} = 64\sqrt{33} \pi см³

(2.6k баллов)