0\\\dfrac{(x-2)^7}{x-1}>0\end{array}\right\ \ \left\{\begin{array}{l}(x-1)(x-1)>0\\\dfrac{(x-2)^7}{x-1}>0\end{array}\right\ \ \Rigyhtarrow \ \ x\in (-\infty ;\, 1\, )\cup (2;+\infty )\\\\\\log_9(x-2)^2(x-1)^7-log_99^8-log_9\dfrac{(x-2)^7}{x-1}\leq 0\ \ ,\ \ \ 0=log_91\ ,\\\\\\\dfrac{(x-2)^7(x-1)^7(x-1)}{9^8\cdot (x-2)^7}\leq 1\ \ ,\ \ \dfrac{(x-1)^8}{9^8}-1\leq 0\ \ ,\ \dfrac{(x-1)^8-9^8}{9^8}\leq 0\ ," alt="7\cdot log_9(x^2-3x+2)\leq 8+log_9\dfrac{(x-2)^7}{x-1}\ \ ,\\\\\\ODZ:\ \left\{\begin{array}{l}x^2-3x+2>0\\\dfrac{(x-2)^7}{x-1}>0\end{array}\right\ \ \left\{\begin{array}{l}(x-1)(x-1)>0\\\dfrac{(x-2)^7}{x-1}>0\end{array}\right\ \ \Rigyhtarrow \ \ x\in (-\infty ;\, 1\, )\cup (2;+\infty )\\\\\\log_9(x-2)^2(x-1)^7-log_99^8-log_9\dfrac{(x-2)^7}{x-1}\leq 0\ \ ,\ \ \ 0=log_91\ ,\\\\\\\dfrac{(x-2)^7(x-1)^7(x-1)}{9^8\cdot (x-2)^7}\leq 1\ \ ,\ \ \dfrac{(x-1)^8}{9^8}-1\leq 0\ \ ,\ \dfrac{(x-1)^8-9^8}{9^8}\leq 0\ ," align="absmiddle" class="latex-formula">