Ответ:
![1)\ \ y^{n}\, dy=x^{2n}\, dx\ \ ,\ \ \ \ \int y^{n}\, dy=\int x^{2n}\, dx\\\\\dfrac{y^{n+1}}{n+1}=\dfrac{x^{2n+1}}{2n+1}+C 1)\ \ y^{n}\, dy=x^{2n}\, dx\ \ ,\ \ \ \ \int y^{n}\, dy=\int x^{2n}\, dx\\\\\dfrac{y^{n+1}}{n+1}=\dfrac{x^{2n+1}}{2n+1}+C](https://tex.z-dn.net/?f=1%29%5C%20%5C%20y%5E%7Bn%7D%5C%2C%20dy%3Dx%5E%7B2n%7D%5C%2C%20dx%5C%20%5C%20%2C%5C%20%5C%20%5C%20%5C%20%5Cint%20%20y%5E%7Bn%7D%5C%2C%20dy%3D%5Cint%20x%5E%7B2n%7D%5C%2C%20dx%5C%5C%5C%5C%5Cdfrac%7By%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%3D%5Cdfrac%7Bx%5E%7B2n%2B1%7D%7D%7B2n%2B1%7D%2BC)
0\ ,\ to\ \ \ k_{1,2}=\dfrac{(n+2)\pm |n-2|}{2}\\\\y_{obshee}=C_1\cdot e^{\frac{(n+2)-|n-2|}{2}\, x}+C_2\cdot e^{\frac{(n+2)+|n-2|}{2}\, x}\\\\Esli\ D=0\ ,\ to\ \ n=2\ \ \to \ \ \ k^2-4k+4=0\ \ ,\ \ (k-2)^2=0\ \ ,\ \ k=2\ \to \\\\y_{obshee}=e^{2x}\cdot (C_1+C_2x)" alt="2)\ \ y''-(n+2)\, y'+2n\cdot y=0\\\\k^2-(n+2)\, k+2n=0\\\\D=(n+2)^2-8n=n^2-4n+4=(n-2)^2\geq 0\\\\Esli\ D>0\ ,\ to\ \ \ k_{1,2}=\dfrac{(n+2)\pm |n-2|}{2}\\\\y_{obshee}=C_1\cdot e^{\frac{(n+2)-|n-2|}{2}\, x}+C_2\cdot e^{\frac{(n+2)+|n-2|}{2}\, x}\\\\Esli\ D=0\ ,\ to\ \ n=2\ \ \to \ \ \ k^2-4k+4=0\ \ ,\ \ (k-2)^2=0\ \ ,\ \ k=2\ \to \\\\y_{obshee}=e^{2x}\cdot (C_1+C_2x)" align="absmiddle" class="latex-formula">
![3)\ \ y'-ny\cdot ctgx=3nx^2\cdot sin^{n}x\\\\y=uv\ \ y'=u'v+uv'\\\\u'v+uv'-nuv\cdot ctgx=3nx^2\cdot sin^{n}x\\\\u'v+u\cdot (v'-nv\cdot ctgx)=3nx^2\cdot sin^{n}x\\\\a)\ \ \dfrac{dv}{dx}=nv\cdot ctgx\ \ ,\ \ \int \dfrac{dv}{v}=\int n\cdot ctgx\, dx\ \ ,\ \ ln|v|=n\cdot ln|sinx|\ ,\ \ v=sin^{n}x\\\\b)\ \ \dfrac{du}{dx}\cdot sin^{n}x=3nx^2\cdot sin^{n}x\ \ ,\ \ \int du=3nx^2\, dx\ \ ,\ \ u=n\cdot x^3+C\\\\c)\ \ y_{obshee}=sin^{n}x\cdot (n\cdot x^3+C) 3)\ \ y'-ny\cdot ctgx=3nx^2\cdot sin^{n}x\\\\y=uv\ \ y'=u'v+uv'\\\\u'v+uv'-nuv\cdot ctgx=3nx^2\cdot sin^{n}x\\\\u'v+u\cdot (v'-nv\cdot ctgx)=3nx^2\cdot sin^{n}x\\\\a)\ \ \dfrac{dv}{dx}=nv\cdot ctgx\ \ ,\ \ \int \dfrac{dv}{v}=\int n\cdot ctgx\, dx\ \ ,\ \ ln|v|=n\cdot ln|sinx|\ ,\ \ v=sin^{n}x\\\\b)\ \ \dfrac{du}{dx}\cdot sin^{n}x=3nx^2\cdot sin^{n}x\ \ ,\ \ \int du=3nx^2\, dx\ \ ,\ \ u=n\cdot x^3+C\\\\c)\ \ y_{obshee}=sin^{n}x\cdot (n\cdot x^3+C)](https://tex.z-dn.net/?f=3%29%5C%20%5C%20y%27-ny%5Ccdot%20ctgx%3D3nx%5E2%5Ccdot%20sin%5E%7Bn%7Dx%5C%5C%5C%5Cy%3Duv%5C%20%5C%20y%27%3Du%27v%2Buv%27%5C%5C%5C%5Cu%27v%2Buv%27-nuv%5Ccdot%20ctgx%3D3nx%5E2%5Ccdot%20sin%5E%7Bn%7Dx%5C%5C%5C%5Cu%27v%2Bu%5Ccdot%20%28v%27-nv%5Ccdot%20ctgx%29%3D3nx%5E2%5Ccdot%20sin%5E%7Bn%7Dx%5C%5C%5C%5Ca%29%5C%20%5C%20%5Cdfrac%7Bdv%7D%7Bdx%7D%3Dnv%5Ccdot%20ctgx%5C%20%5C%20%2C%5C%20%5C%20%5Cint%20%5Cdfrac%7Bdv%7D%7Bv%7D%3D%5Cint%20n%5Ccdot%20ctgx%5C%2C%20dx%5C%20%5C%20%2C%5C%20%5C%20ln%7Cv%7C%3Dn%5Ccdot%20ln%7Csinx%7C%5C%20%2C%5C%20%5C%20v%3Dsin%5E%7Bn%7Dx%5C%5C%5C%5Cb%29%5C%20%5C%20%5Cdfrac%7Bdu%7D%7Bdx%7D%5Ccdot%20sin%5E%7Bn%7Dx%3D3nx%5E2%5Ccdot%20sin%5E%7Bn%7Dx%5C%20%5C%20%2C%5C%20%5C%20%5Cint%20du%3D3nx%5E2%5C%2C%20dx%5C%20%5C%20%2C%5C%20%5C%20u%3Dn%5Ccdot%20x%5E3%2BC%5C%5C%5C%5Cc%29%5C%20%5C%20y_%7Bobshee%7D%3Dsin%5E%7Bn%7Dx%5Ccdot%20%28n%5Ccdot%20x%5E3%2BC%29)