Ответ:
Если это как-то поможет, то вот решение похожей задачи. Условие в объяснении.
При производстве 15 в месяц всю продукцию всегда купят, доход фирмы 1*15*75 == 1125, потери 0, прибыль 1125
При производстве 16 в месяц средний доход 0.55*15*75+(0.1+0.35)*16*75=1146.75, средние потери 0.55*115=63.25, средняя прибыль 1083.5
При производстве 17 в месяц средний доход 0.55*15*75+0.1*16*75+0.35*17*75=1185, средние потери 0.55*2*115+0.1*115 =138, средняя прибыль 1047
Выгоднее всего производить 15 коробок.
Если бы время хранения было неограниченным, то надо смотреть на средний спрос:
0.55*15+0.1*16+0.35*17 = 15.8
При производстве 15 в месяц средняя прибыль по прежнему 1125
При производстве 16 в месяц средний доход 15.8*75=1185, средние потери 0.2*115=23, средняя прибыль становится 1162
Выгоднее производить 16 в месяц (а еще лучше уменьшать производство до 15 при переизбытке на складе)
Объяснение:
Небольшая частная фирма производит косметическую продукцию для подростков. В течение месяца реализуется 15, 16 или 17 упаковок товара. От продажи каждой упаковки фирма получает 75 тыс. руб. прибыли. Косметика имеет малый срок годности, поэтому, если упаковка не продана в месячный срок, она должна быть уничтожена. Поскольку производство одной упаковки обходится в 115 тыс. руб. , потери фирмы составляют 115 руб. , если упаковка не продана к концу месяца. Вероятности продать 15, 16 или 17 упаковок за месяц составляют соответственно 0,55, 0,1 и 0,35. Сколько упаковок косметики следует производить фирме ежемесячно? Какова ожидаемая стоимостная ценность этого решения? Сколько упаковок можно было бы производить при значительном продлении хранения косметической продукции?