Ответ:
Объяснение:
1)Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º. Отсюда следует, что вписать в окружность можно только равнобокую трапецию.
2) Т.к. центр трапеции лежит на большем основании, то окружность описана вокруг треугольников АВД, АСД , АС, ВД - диагонали. Если центр лежит на середине стороны, то эти треугольники прямоугольные.
Треугольник АBC - равносторонний, углы ВАС и ВСА - равны.
ВСА и САD - равны, как накрест лежащие при параллельных прямых
АС - биссектриса ВАD
∠ВАС =∠ВСА=∠САD=х
∠ВАD=2х
В прямоугольном треугольнике: 2х+х+90°=180°
3х=90° х=30°
∠ВАD=∠СDA=60°
∠ABC=∠BCD=120°