___________________
ОДЗ:
0} \atop {x^{2}-x-16>0 }} \right." alt="\left \{ {{x-1>0} \atop {x^{2}-x-16>0 }} \right." align="absmiddle" class="latex-formula">
x² - x - 16>0
x² - x - 16=0
D = (-1)²- 4 * (-16) = 1 + 64 = 65
≈ 4,5
≈ -3,5
1} \atop {\left[\begin{array}{ccc}x>\frac{1+\sqrt{65} }{2} \\x" alt="\left \{ {{x>1} \atop {\left[\begin{array}{ccc}x>\frac{1+\sqrt{65} }{2} \\x" align="absmiddle" class="latex-formula">
\frac{1+\sqrt{65} }{2} }}" alt="{x>\frac{1+\sqrt{65} }{2} }}" align="absmiddle" class="latex-formula">
_______________________
| * ( x² - x - 16 )
x-1 = x² - x - 16
x² - 2x - 15 = 0
D = (-2)² - 4 * (-15) = 4 + 60 = 64 = 8²
- посторонний корень
Ответ: x = 5