Помогите с геометрией умоляю, даю много баллов!!!! Неужели геометрия как и мне никому не...

+377 голосов
6.5m просмотров

Помогите с геометрией умоляю, даю много баллов!!!! Неужели геометрия как и мне никому не даётся???(((


Геометрия | 6.5m просмотров
Дан 1 ответ
+150 голосов
Правильный ответ

Ответ:

а) Доказано; б) 36

Объяснение:

а)

Обратимся к первому рисунку. Пусть ∠AOB=∠COD=ω. Тогда ∠BAO=∠ABO=∠OCD=∠ODC=α (AO=OB=R и CO=OD=R => треугольники ABO и COD равнобедренные, в которых угол против основания общий, а => \alpha=\dfrac{180^\circ-\omega}{2}=90^\circ-\dfrac{\omega}{2}). ΔAOD равнобедренный (AO=OD=R) => ∠OAD=∠ODA=β. Аналогично ∠OBC=∠OCB=γ. Т.к. четырехугольник вписан в окружность, то ∠BAD+∠BCD=180°. Значит: \alpha+\beta+\gamma+\alpha=2\alpha+\beta+\gamma=180^\circ. ∠BAD+∠ABC=\alpha+\beta+\alpha+\gamma=2\alpha+\beta+\gamma=180^\circ. Получили, что BC||AD, т.к. внутренние односторонние углы при этих прямых и секущей AB в сумме дают 180°. Поскольку AD≠BC (по условию AD=2BC), четырехугольник трапеция, а не параллелограмм, а так как она вписана в окружность, то равнобедренная. Доказано.

Заметим, что центр описанной около четырехугольника окружности может лежать вне него. Тогда доказательство будет отличаться. Начиная с этого момента забудем о тех обозначениях, которые были введены для доказательства первого случая. Обратимся ко второму рисунку. Заметим, что ∠ABC=∠BCD=α, так как AO=OB=R и CO=OD=R => треугольники ABO и COD равнобедренные, в которых угол против основания общий, а => \angle ABO=\angle OCD=\dfrac{180^\circ-\omega}{2}=90^\circ-\dfrac{\omega}{2} (здесь ∠AOB=∠COD=ω) и ∠OBC=∠BCO, так как это углы при основании равнобедренного треугольника BOC (OB=OC=R). Пусть ∠BAD=β. Тогда \beta+\alpha=180^\circ (так как четырехугольник вписанный). Но \beta+\alpha=\angle BAD+\angle ABC=180^\circ. Значит BC||AD, т.к. внутренние односторонние углы при этих прямых и секущей AB в сумме дают 180°. Поскольку AD≠BC (по условию AD=2BC), четырехугольник трапеция, а не параллелограмм, а так как она вписана в окружность, то равнобедренная. Доказано.

б)

Решим задачу для 1-ого случая:

Пусть EG - расстояние между прямыми BC и AD. Т.к. BC||AD, то EG=6. Заметим, что треугольники BOC и AOD равновеликие.

Докажем это:

Пусть ∠BOC=α. Тогда (так как ∠AOB=∠COD=90°, а => ∠BOC+∠AOD=360°-90°-90°=180°) ∠AOD=180°-α.

Получим:

S_{BOC}=\dfrac{1}{2}R^2\times\sin\alpha\\S_{AOD}=\dfrac{1}{2}R^2\times\sin(180^\circ-\alpha)=\dfrac{1}{2}R^2\times\sin(\alpha)

Запишем их площади через формулу про основание и высоту:

\dfrac{1}{2}BC\times OG=\dfrac{1}{2}AD\times OE\\\\BC\times OG=AD\times OE

Из условия следует, что AD=2BC.

Тогда:

BC\times OG=2BC\times OE\\OG=2OE

Знаем, что:

OG+OE=6

Тогда:

imageOG=4" alt="2OE+OE=6\\OE=2\\=>OG=4" align="absmiddle" class="latex-formula">

Поскольку треугольники BOC и AOD равнобедренные, то OG и OE не только их высоты, но и медианы соответственно, а значит BG=BC/2 и AE=AD/2.

Тогда из прямоугольных треугольников BOG и AOE по теореме Пифагора найдем BC и AD:

imageBC=2\sqrt{R^2-16}\\\\\dfrac{AD^2}{4}+4=R^2\\=>AD=2\sqrt{R^2-4}" alt="\dfrac{BC^2}{4}+16=R^2\\=>BC=2\sqrt{R^2-16}\\\\\dfrac{AD^2}{4}+4=R^2\\=>AD=2\sqrt{R^2-4}" align="absmiddle" class="latex-formula">

По условию AD=2BC.

Значит:

2\sqrt{R^2-4}=2\times2\sqrt{R^2-16}\\\sqrt{R^2-4}=2\sqrt{R^2-16}\\R^2-4=4R^2-64\\3R^2=60\\R^2=20

Теперь находим BC и AD:

BC=2\sqrt{20-16}=4\\AD=2\times4=8

Теперь можно без труда найти площадь трапеции:

S=\dfrac{AD+BC}{2}\times BH=\dfrac{8+4}{2}\times6=36

Получили, что площадь трапеции ABCD равна 36.

Задача решена!

(Для второго случая решить пункт б) невозможно, так как дуга AB + дуга CD по условию должны давать 180°, что невозможно для данного случая)

(8.7k баллов)
+102

ОГРОМНОЕ СПАСИБО !!!!!