Ответ:
![x=pi * n - \frac{3*pi}{4} \\x=pi * n - \frac{pi}{4} x=pi * n - \frac{3*pi}{4} \\x=pi * n - \frac{pi}{4}](https://tex.z-dn.net/?f=x%3Dpi%20%2A%20n%20-%20%5Cfrac%7B3%2Api%7D%7B4%7D%20%20%20%20%20%20%20%20%20%20%5C%5Cx%3Dpi%20%2A%20n%20-%20%5Cfrac%7Bpi%7D%7B4%7D)
где n ∈ Z
Пошаговое объяснение:
1) Применим формулу сокращённого умножения
в левой части уравнения:
![(cos(x)^2 + sin(x)^2) (cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4) (cos(x)^2 + sin(x)^2) (cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4)](https://tex.z-dn.net/?f=%28cos%28x%29%5E2%20%2B%20sin%28x%29%5E2%29%20%28cos%28x%29%5E4%20-%20cos%28x%29%5E2%20%2A%20sin%28x%29%5E2%20%2B%20sin%28x%29%5E4%29)
2) По формуле sin 2x = 2 * sin x cos x,
тогда
= 4 * ![sin(x)^{2} * cos(x)^{2} sin(x)^{2} * cos(x)^{2}](https://tex.z-dn.net/?f=sin%28x%29%5E%7B2%7D%20%2A%20cos%28x%29%5E%7B2%7D)
3) Тогда наше уравнение имеет вид:
![(cos(x)^2 + sin(x)^2) (cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4) = 1/4 * 4 cos(x)^2 * sin(x)^2 (cos(x)^2 + sin(x)^2) (cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4) = 1/4 * 4 cos(x)^2 * sin(x)^2](https://tex.z-dn.net/?f=%28cos%28x%29%5E2%20%2B%20sin%28x%29%5E2%29%20%28cos%28x%29%5E4%20-%20cos%28x%29%5E2%20%2A%20sin%28x%29%5E2%20%2B%20sin%28x%29%5E4%29%20%3D%201%2F4%20%2A%204%20cos%28x%29%5E2%20%2A%20sin%28x%29%5E2)
![1 * (cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4) = cos(x)^2 * sin(x)^2 1 * (cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4) = cos(x)^2 * sin(x)^2](https://tex.z-dn.net/?f=1%20%2A%20%28cos%28x%29%5E4%20-%20cos%28x%29%5E2%20%2A%20sin%28x%29%5E2%20%2B%20sin%28x%29%5E4%29%20%3D%20cos%28x%29%5E2%20%2A%20sin%28x%29%5E2)
Перенесем всё в левую часть уравнения:
![cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4 - cos(x)^2 * sin(x)^2 = 0 cos(x)^4 - cos(x)^2 * sin(x)^2 + sin(x)^4 - cos(x)^2 * sin(x)^2 = 0](https://tex.z-dn.net/?f=cos%28x%29%5E4%20-%20cos%28x%29%5E2%20%2A%20sin%28x%29%5E2%20%2B%20sin%28x%29%5E4%20-%20cos%28x%29%5E2%20%2A%20sin%28x%29%5E2%20%3D%200)
Приводим подобные слагаемые:
![cos(x)^4 - 2 *cos(x)^2 * sin(x)^2 + sin(x)^4 = 0 cos(x)^4 - 2 *cos(x)^2 * sin(x)^2 + sin(x)^4 = 0](https://tex.z-dn.net/?f=cos%28x%29%5E4%20-%202%20%2Acos%28x%29%5E2%20%2A%20sin%28x%29%5E2%20%2B%20sin%28x%29%5E4%20%3D%200)
Свернём по формуле квадрата разности:
![((cos(x)^2 - sin(x)^2)^{2} = 0 ((cos(x)^2 - sin(x)^2)^{2} = 0](https://tex.z-dn.net/?f=%28%28cos%28x%29%5E2%20-%20sin%28x%29%5E2%29%5E%7B2%7D%20%20%3D%200)
![cos(x)^2 - sin(x)^2 = 0 cos(x)^2 - sin(x)^2 = 0](https://tex.z-dn.net/?f=cos%28x%29%5E2%20-%20sin%28x%29%5E2%20%20%3D%200)
![x=pi * n - \frac{3*pi}{4} x=pi * n - \frac{3*pi}{4}](https://tex.z-dn.net/?f=x%3Dpi%20%2A%20n%20-%20%5Cfrac%7B3%2Api%7D%7B4%7D)
и
,
где n ∈ Z