В правильной четырёхугольной пирамиде SABCD точка О - центр основания, S вершина, SC =5,...

+168 голосов
4.1m просмотров

В правильной четырёхугольной пирамиде SABCD точка О - центр основания, S вершина, SC =5, AC =6. Найдите длинну отрезка SO. ​


Математика (24 баллов) | 4.1m просмотров
Дан 1 ответ
+71 голосов

Ответ:

SO=4

Пошаговое объяснение:

Отрезок SO является высотой пирамиды, опущенной из вершины в центр основания.

Ребро пирамиды с высотой и основанием создают прямоугольный треугольник АSО, в котором <АОS=90°, SO и AO - катеты, а АS - гипотенуза. О - центр диагонали АС, поэтому АО=АС:2=6:2=3</p>

По ттеореме Пифагора находим SO

SO=√AS^2-AO^2=√5^2-3^2=√25-9=

√16=4

(3.7k баллов)