0\ \ ,\ \ \dfrac{1}{4}\cdot t^2-\dfrac{17}{8}\cdot t+1=0\ \ ,\ \ 2t^2-17t+8=0\ \ ,\\\\D=225\ ,\ \ t_1=\dfrac{1}{2}=2^{-1}\ \ ,\ \ t_2=8=2^3\\\\2^{x}=2^{-1}\ \ , \ \ x=-1\\\\2^{x}=2^3\ \ ,\ \ x=3\\\\Otvet:\ \ x=-1\ ,\ x=3\ ." alt="13.\ \ \ 4^{x-1}-17\cdot 2^{x-3}+1=0\\\\4^{x}\cdot \dfrac{1}{4}-17\cdot 2^{x}\cdot \dfrac{1}{8}+1=0\\\\t=2^{x}>0\ \ ,\ \ \dfrac{1}{4}\cdot t^2-\dfrac{17}{8}\cdot t+1=0\ \ ,\ \ 2t^2-17t+8=0\ \ ,\\\\D=225\ ,\ \ t_1=\dfrac{1}{2}=2^{-1}\ \ ,\ \ t_2=8=2^3\\\\2^{x}=2^{-1}\ \ , \ \ x=-1\\\\2^{x}=2^3\ \ ,\ \ x=3\\\\Otvet:\ \ x=-1\ ,\ x=3\ ." align="absmiddle" class="latex-formula">
2\\\\log_4\dfrac{x+2}{x-2}=log_4\dfrac{16}{8}\ \ \ ,\ \ \ \dfrac{x+2}{x-2}=2\ \ ,\ \ \ x+2=2x-4\ \ ,\ \ x=6\\\\Otvet:\ \ x=6\ ." alt="15.\ \ \ log_4(x+2)-log_4(x-2)=2-log_48\ \ ,\ \ \ ODZ:\ \ x>2\\\\log_4\dfrac{x+2}{x-2}=log_4\dfrac{16}{8}\ \ \ ,\ \ \ \dfrac{x+2}{x-2}=2\ \ ,\ \ \ x+2=2x-4\ \ ,\ \ x=6\\\\Otvet:\ \ x=6\ ." align="absmiddle" class="latex-formula">
-1\\x-1,5\end{array}\right\ \ -1" alt="16.\ \ \ lg(x+1)-lg(1-x)=lg(2x+3)\ \ ,\ \ \ \ ODZ:\ \left\{\begin{array}{l}x>-1\\x-1,5\end{array}\right\ \ -1" align="absmiddle" class="latex-formula">