Дано: ΔABC, ∠С=100°, СН — высота, СН=4, СВ=8.
Найти: ∠САВ.
Решение.
1) В ΔBHC: ∠BHC=90°(т.к.СН — высота), СН=4, СВ=8.
В прямоугольном треугольнике, если катет равен половине гипотенузы, то угол против этого катета равен 30°.
СН=½СВ => ∠В= 30°.
2) В ΔABC:
Сумма углов треугольника равна 180°.
∠САВ+∠АВС+∠ВСА=180°;
∠САВ+30°+100°=180°;
∠САВ+130°=180°;
∠САВ=180°–130°;
∠САВ=50°.
Ответ: 50°.