1. На графике решение неравенства - это часть параболы, которая находится на прямой y = 0 (ось OX) и выше неё.
![x\in[0,5;\;2] x\in[0,5;\;2]](https://tex.z-dn.net/?f=x%5Cin%5B0%2C5%3B%5C%3B2%5D)
![2.\;2x^2-7x+6 2.\;2x^2-7x+6](https://tex.z-dn.net/?f=2.%5C%3B2x%5E2-7x%2B6%3C0%5C%5C2x%5E2-7x%2B6%3D0%5C%5CD%3D%28-7%29%5E2-4%5Ccdot2%5Ccdot6%3D49-48%3D1%5C%5Cx_%7B1%2C2%7D%3D%5Cfrac%7B7%5Cpm1%7D4%5C%5Cx_1%3D1%5Cfrac12%2C%5C%3Bx_2%3D2%5C%5C%5C%5C%28x-1%5Cfrac12%29%28x-4%29%3C0%5C%5Cx%5Cin%28-%5Cinfty%3B%5C%3B1%5Cfrac12%29%3A%5C%3B%5C%3B%28x-1%5Cfrac12%29%28x-4%29%3E0%5C%5Cx%5Cin%28-1%5Cfrac12%3B%5C%3B4%29%3A%5C%3B%5C%3B%28x-1%5Cfrac12%29%28x-4%29%3C0%5C%5Cx%5Cin%284%3B%5C%3B%2B%5Cinfty%29%3A%5C%3B%5C%3B%28x-1%5Cfrac12%29%28x-4%29%3E0)
Ответ: ![x\in(1\frac12;\;4) x\in(1\frac12;\;4)](https://tex.z-dn.net/?f=x%5Cin%281%5Cfrac12%3B%5C%3B4%29)
![3.\;\frac{(x+2)(2x+1)}{x-3}\leq0 3.\;\frac{(x+2)(2x+1)}{x-3}\leq0](https://tex.z-dn.net/?f=3.%5C%3B%5Cfrac%7B%28x%2B2%29%282x%2B1%29%7D%7Bx-3%7D%5Cleq0)
О.Д.З.:
![x-3\neq0\\x\neq3 x-3\neq0\\x\neq3](https://tex.z-dn.net/?f=x-3%5Cneq0%5C%5Cx%5Cneq3)
Решение:
![\frac{2(x+2)(x+\frac12)}{x-3}\leq0 \frac{2(x+2)(x+\frac12)}{x-3}\leq0](https://tex.z-dn.net/?f=%5Cfrac%7B2%28x%2B2%29%28x%2B%5Cfrac12%29%7D%7Bx-3%7D%5Cleq0)
В точках
и -2 выражение обращается в 0. Определим значение выражения на интервалах (не забываем об О.Д.З.)
0\\\\x\in[-\frac12;\;3):\;\;\frac{2(x+2)(x+\frac12)}{x-3}\leq0\\\\x\in(3;\;+\infty):\;\;\frac{2(x+2)(x+\frac12)}{x-3}>0" alt="x\in(-\infty;\;-2]:\;\;\frac{2(x+2)(x+\frac12)}{x-3}\leq0\\\\x\in(-2;\;-\frac12):\;\;\frac{2(x+2)(x+\frac12)}{x-3}>0\\\\x\in[-\frac12;\;3):\;\;\frac{2(x+2)(x+\frac12)}{x-3}\leq0\\\\x\in(3;\;+\infty):\;\;\frac{2(x+2)(x+\frac12)}{x-3}>0" align="absmiddle" class="latex-formula">
Ответ: ![x\in(-\infty;\;-2]\cup[-\frac12;\;3) x\in(-\infty;\;-2]\cup[-\frac12;\;3)](https://tex.z-dn.net/?f=x%5Cin%28-%5Cinfty%3B%5C%3B-2%5D%5Ccup%5B-%5Cfrac12%3B%5C%3B3%29)
![4.\\\begin{cases}\frac{x-6}{x+10}\geq0\\x-5\geq0\end{cases}\Rightarrow\begin{cases}\frac{x-6}{x+10}\geq0\\x\neq-10\\x\geq5\end{cases}\Rightarrow\begin{cases}x\in(-\infty;\;-10)\cup[6;\;+\infty)\\x\neq-10\\x\geq5\end{cases}\Rightarrow x\geq6 4.\\\begin{cases}\frac{x-6}{x+10}\geq0\\x-5\geq0\end{cases}\Rightarrow\begin{cases}\frac{x-6}{x+10}\geq0\\x\neq-10\\x\geq5\end{cases}\Rightarrow\begin{cases}x\in(-\infty;\;-10)\cup[6;\;+\infty)\\x\neq-10\\x\geq5\end{cases}\Rightarrow x\geq6](https://tex.z-dn.net/?f=4.%5C%5C%5Cbegin%7Bcases%7D%5Cfrac%7Bx-6%7D%7Bx%2B10%7D%5Cgeq0%5C%5Cx-5%5Cgeq0%5Cend%7Bcases%7D%5CRightarrow%5Cbegin%7Bcases%7D%5Cfrac%7Bx-6%7D%7Bx%2B10%7D%5Cgeq0%5C%5Cx%5Cneq-10%5C%5Cx%5Cgeq5%5Cend%7Bcases%7D%5CRightarrow%5Cbegin%7Bcases%7Dx%5Cin%28-%5Cinfty%3B%5C%3B-10%29%5Ccup%5B6%3B%5C%3B%2B%5Cinfty%29%5C%5Cx%5Cneq-10%5C%5Cx%5Cgeq5%5Cend%7Bcases%7D%5CRightarrow%20x%5Cgeq6)
0\\x^2\geq36\end{cases}\Rightarrow\begin{cases}(x+5)(x-3)>0\\x\geq6\\x\leq-6\end{cases}\Rightarrow\begin{cases}x3\\x\geq6\\x\leq-6\end{cases}\Rightarrow\\\\\\\Rightarrow x\in(-\infty;\;-6]\cup[6;\;+\infty)" alt="5.\\\begin{cases}x^2+2x-15>0\\x^2\geq36\end{cases}\Rightarrow\begin{cases}(x+5)(x-3)>0\\x\geq6\\x\leq-6\end{cases}\Rightarrow\begin{cases}x3\\x\geq6\\x\leq-6\end{cases}\Rightarrow\\\\\\\Rightarrow x\in(-\infty;\;-6]\cup[6;\;+\infty)" align="absmiddle" class="latex-formula">