Решить неравенство: x² - 8x + 12 ≥ 0 И если можно расписать как вы его решали, а не...

+364 голосов
4.9m просмотров

Решить неравенство: x² - 8x + 12 ≥ 0 И если можно расписать как вы его решали, а не просто ответ.


Алгебра (88 баллов) | 4.9m просмотров
Дан 1 ответ
+78 голосов

Ответ:

х∈ (-∞, 2]∪[6, +∞).

Объяснение:

Решить неравенство:

x² - 8x + 12 ≥ 0

Приравнять к нулю и решить как квадратное уравнение:

x² - 8x + 12 = 0

D=b²-4ac = 64-48=16        √D=4

х₁=(-b-√D)/2a  

х₁=(8-4)/2

х₁=4/2

х₁=2;              

х₂=(-b+√D)/2a

х₂=(8+4)/2

х₂=12/2

х₂=6:

Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х= 6, отмечаем эти точки схематично, смотрим на график.  

По графику ясно видно, что у>=0 (как в неравенстве), слева и справа от значений х, то есть, решения неравенства находятся в интервалах  

х∈ (-∞, 2]∪[6, +∞).  

Неравенство нестрогое, значения х=2 и х=6 входят в решения неравенства, поэтому скобки квадратные.

Скобки при знаках бесконечности всегда круглые.

(7.2k баллов)