Найдите, множество первообразных для функции: y(x)=2/(3x-4)^3 СРОЧНО, пожалуйста.

+191 голосов
2.3m просмотров

Найдите, множество первообразных для функции: y(x)=2/(3x-4)^3 СРОЧНО, пожалуйста.


Алгебра (51 баллов) | 2.3m просмотров
Дано ответов: 2
+52 голосов
Правильный ответ

Ответ:

f(x)=\dfrac{2\, dx}{(3x-4)^3}\\\\\\F(x)=\int \dfrac{2\, dx}{(3x-4)^3}=\Big[\; t=3x-4\ ,\ dt=3\, dx\; \Big]=\dfrac{2}{3}\int \dfrac{dt}{t^3}=\dfrac{2}{3}\cdot \dfrac{t^{-2}}{-2}+C=\\\\\\=-\dfrac{1}{3\, t^2}+C=-\dfrac{1}{3\, (3x-4)^2}+C

(834k баллов)
+106

пожалуйста помогите мне!

+180 голосов

если подвести под знак дифференциала (3х-4),то получим dx=d(3x-4)/3

∫2dx/(3x-4)³=(2/3)∫d(3x-4)/(3x-4)³ и, используя инвариантность интеграла, найдем множество первообразных,

∫2dx/(3x-4)³=(2/3)∫d(3x-4)/(3x-4)³=(-(2/3)*(1/2)*/(3x-4)²)+с=

(-1/3)*(1/(3х-4)²)+с

(151k баллов)