Объяснение:
{y⁴+19=20*(x+y) {y⁴+19=10*(2x+2y)
{√x+√(2x+x)=√2 {√x+√(2x+x)=√2 ОДЗ: х≥0.
Рассмотрим второе уравнение:

Подставляем 2х в первое уравнение:
y⁴+19=10*(1-2y+y²+2y)
y⁴+19=10+10y²
y⁴-10y²+9=0
Пусть у²=t≥0 ⇒
t²-10t+9=0 D=64 √D=8
t₁=y²=1 y₁=1 y₂=-1.
y₁=1 ⇒
2x=1-2*1+1²=0
x₁=0.
y₂=-1 ⇒
2x=1-2*(-1)+(-1)²=1+2+1=4
2x=4 |÷2
x₂=2.
t₂=y²=9 y₃=3 y₄=-3
y₃=3 ⇒
2x=1-2*3+3²=1-6+9=4
2x=4 |÷2
x₃=2.
y₄=-3 ⇒
2x=1-2(-3)+(-3)²=1+6+9=16
2x=16 |÷2
x₄=8.
Проверка показала, что корни системы уравнений х₃=2 у₃=3
и х₄=8 у₄=-3 лишние вследствие неоднократного возведения в степень второго уравнения.
Ответ: x₁=0 y₁=1 x₂=2 y₂=-1.