ДАВС-правильная пирамида с основанием АВС.
ВМ-биссектриса угла АВС.
ДН-высота пирамиды, следовательно ВН перпендикулярна ВМ.
ВМ=15, МН=1/3*МВ=1/3 *15=5, т.к. в правильном треугольнике биссектриса является ещё и медианой.
Треугольник МНД-прямоугольный с прямым углом МНД.
В нём ДН=30 (по условию), МН=5.
Тангенсом угла между плоскостью боковой грани пирамиды и плоскостью основания
является tg угла ДМН. Найдём его значение:
tg(ДМН)=ДН/МН=30:5=6