Знайти sin a, якщо cos a/2 + sin a/2 = -0,2

+456 голосов
5.2m просмотров

Знайти sin a, якщо cos a/2 + sin a/2 = -0,2


Алгебра (37 баллов) | 5.2m просмотров
Дан 1 ответ
+65 голосов
Правильный ответ

Дано уравнение cos a/2 + sin a/2 = -0,2 .

Пусть а/2 = х, применим формулу cos x = √(1 - sin²x).

Получаем √(1 - sin²x) + sin x = -0,2.

Перенесём sin х вправо и возведём обе части в квадрат.

1 - sin²x = (-0,2 -  sin x)² = 0,04 + 0,4sin x + sin²x.

2sin²x + 0,4sin x - 0,96 = 0.  Пусть sin x = t.

Ищем дискриминант:

D=0.4^2-4*2*(-0.96)=0.16-4*2*(-0.96)=0.16-8*(-0.96)=0.16-(-8*0.96)=0.16-(-7.68)=0.16+7.68=7.84;

Дискриминант больше 0, уравнение имеет 2 корня:

t_1=(2root7.84-0.4)/(2*2)=(2.8-0.4)/(2*2)=2.4/(2*2)=2.4/4=0.6;

t_2=(-2root7.84-0.4)/(2*2)=(-2.8-0.4)/(2*2)=-3.2/(2*2)=-3.2/4=-0.8.

Отсюда видит, что есть 2 решения переменной (а/2) = х с учётом формул cos x = √(1 - sin²x) и условия cos (а/2) + sin (a/2)= -0,2.)

1) sin (a/2) = 0,6, cos (a/2)  = -0,8,

2) sin (a/2) = -0,8, cos (a/2)  = 0,6.

Для любого варианта синус двойного угла определится так:

sin a = 2sin(a/2)*cos(a/2) = 2*(-0,8)*0,6 = -0,96.

(309k баллов)