1. Найдите площадь диагонального сечения правильной четырехугольной пирамиды, если её...

+761 голосов
986k просмотров

1. Найдите площадь диагонального сечения правильной четырехугольной пирамиды, если её высота равна 4 м, а апофема 8 м. 2. Площадь осевого сечения цилиндра 48 дм 2 , а его образующая равна диаметру основания. Найдите площадь основания цилиндра. 3. Ребро куба равно 6 см. Найдите площадь сечения, проходящего через центр шара, вписанного в этот куб.


Геометрия (19 баллов) | 986k просмотров
Дан 1 ответ
+125 голосов

Ответ:

Чертеж и весь счет во вложении.

Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.

AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.

Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия.  Зная ее и AC, находим SO.

Дальше вычисляем SC.

Ответ: 10 см


image
(263 баллов)