Помогите с заданиями пожалуйста)))

0 голосов
31 просмотров

Помогите с заданиями пожалуйста)))


image

Алгебра (391 баллов) | 31 просмотров
Дан 1 ответ
0 голосов

6. \ f(x) = \dfrac{x^{3}}{3} - \dfrac{3a - 1}{2}x^{2} + (2a^{2} - a)x + 19

D(f): \ x \in \mathbb{R}

Знайдемо похідну від функції f(x):

f'(x) = x^{2} - (3a - 1)x + 2a^{2} - a

а) Критичною точкою функції f(x) називається точка, у якій похідна f'(x) цієї функції дорівнює нулю.

Отже, розв'яжемо квадратне рівняння x^{2} - (3a - 1)x + 2a^{2} - a = 0 залежно від значень параметра a

Знайдемо дискримінант цього рівняння:

D = (-(3a - 1))^{2} - 4 \cdot 1 \cdot (2a^{2} - a) = a^{2} - 2a +1 = (a - 1)^{2} \geq 0

Розглянемо два випадки.

1) Якщо image 0" alt="D > 0" align="absmiddle" class="latex-formula">, тобто image 0" alt="(a - 1)^{2} > 0" align="absmiddle" class="latex-formula">, то маємо дві критичні точки.

image 0" alt="(a - 1)^{2} > 0" align="absmiddle" class="latex-formula">

a \neq 1, тобто a \in (-\infty; \ 1) \cup (1; \ +\infty)

Отже, при a \in (-\infty; \ 1) \cup (1; \ +\infty) маємо дві критичні точки:

x_{1,2} = \dfrac{3a - 1 \pm \sqrt{(a - 1)^{2}}}{2 \cdot 1} = \dfrac{3a - 1\pm (a - 1)}{2} = \left[\begin{array}{ccc}x_{1} = 2a - 1\\x_{2} = a \ \ \ \ \ \ \ \\\end{array}\right

2) Якщо D = 0, тобто (a - 1)^{2} = 0; \ a = 1, то маємо одну критичну точку:

x = \dfrac{3a - 1}{2} = \dfrac{3 \cdot 1 - 1}{2} = 1

б) Точками екстремуму функції f(x) називаються критичні точки, при переході через яких похідна f'(x) змінює свій знак на протилежний.

Теорема Ферма (необхідна умова екстремуму): якщо точка x_{0}  є точкою екстремуму функції f(x) і в цій точці існує похідна, то вона дорівнює нулю: f'(x) = 0 (див. пункт а).

Теорема (достатня умова екстремуму): якщо функція f(x) неперервна в точці x_{0} та:

1) image 0" alt="f'(x) > 0" align="absmiddle" class="latex-formula"> на проміжку (a; \ x_{0}) і f'(x) < 0 на проміжку (x_{0}; \ b), то x_{0} є точкою максимуму функції f(x);

2) f'(x) < 0 на проміжку (a; \ x_{0}) і image 0" alt="f'(x) > 0" align="absmiddle" class="latex-formula"> на проміжку (x_{0}; \ b), то x_{0} є точкою мінімуму функції f(x).

Якщо a \in (-\infty; \ 1) \cup (1; \ +\infty), то:

1) image x_{2}" alt="x_{1} > x_{2}" align="absmiddle" class="latex-formula"> при a \in (1; \ +\infty) маємо: x_{\max} = a; \ x_{\min} = 2a - 1 (див. рисунок).

2) x_{1} < x_{2} при a \in (-\infty; \ 1) маємо: x_{\max} = 2a - 1; \ x_{\min} = a (див. рисунок).

Якщо a = 1, то немає точок екстремуму (див рисунок).

в) Ознака зростання та спадання функції: якщо image 0" alt="f'(x) > 0" align="absmiddle" class="latex-formula"> у кожній точці проміжку (a; \ b), то функція y = f(x) зростає на

З рисунків можна дійти висновку:

1) Якщо a \in (1; \ +\infty), то функція f(x) зростає на x \in (-\infty; \ a) \cup (2a - 1; \ +\infty) та спадає на x \in (a; \ 2a - 1).

2) Якщо a \in (-\infty; \ 1), то функція <img src="https:/

(682 баллов)