Пошаговое объяснение:

1 \\ y _{2} = \frac{5 - 7}{6} = - \frac{1}{3} \\ \sin(x) = - \frac{1}{3} \\ x =- arcsin( \frac{1}{3} ) + 2πk \\ x = arcsin( \frac{1}{3} ) + π + 2πk" alt="2) \\ 3 \sin(x) ^{2} - 5 \sin(x) - 2 = 0 \\ \sin(x) = y, \: |y| < 1 \\ 3 {y}^{2} - 5y - 2 = 0 \\ D = 25 + 4 \times 3 \times 2 = 49 \\ y _{1} = \frac{5 + 7}{6} = 2 > 1 \\ y _{2} = \frac{5 - 7}{6} = - \frac{1}{3} \\ \sin(x) = - \frac{1}{3} \\ x =- arcsin( \frac{1}{3} ) + 2πk \\ x = arcsin( \frac{1}{3} ) + π + 2πk" align="absmiddle" class="latex-formula">
3)
