Решите уравнение

0 голосов
23 просмотров

Решите уравнение


Алгебра (58 баллов) | 23 просмотров
Дан 1 ответ
0 голосов

f(t) - монотонно возрастает

g(t) - монотонно убывает

Следовательно один корень = 6

Я не стал писать ограничения в самом начале,так как при замене это сделать гораздо проще

\sqrt{3-5x+x^2}+\sqrt{x^2-5x+10}-5x=13-x^2\\\sqrt{x^2-5x+3}+\sqrt{x^2-5x+10}=-\left ( x^2-5x-13 \right )\\x^2-5x=t\Rightarrow \sqrt{t+3}+\sqrt{t+10}=-(t-13)\\\left.\begin{matrix}f(t)=\sqrt{t+3}+\sqrt{t+10}\\ g(t)=-(t-13)\end{matrix}\right|\Rightarrow t=6,t\geq -3\\x^2-5x-6=0\Rightarrow x=\left \{-1;6 \right \}

(864 баллов)