Ответ:
Метод зон ФренеляПереход в предыдущее окно Возврат из предыдущего окна
Френель предложил оригинальный метод разбиения волновой поверхности S на зоны, позволивший сильно упростить решение задач (метод зон Френеля).
Границей первой (центральной) зоны служат точки поверхности S, находящиеся на расстоянии от точки M (рис. 9.2). Точки сферы S, находящиеся на расстояниях , , и т.д. от точки M, образуют 2, 3 и т.д. зоны Френеля.
Колебания, возбуждаемые в точке M между двумя соседними зонами, противоположны по фазе, так как разность хода от этих зон до точки M .
Поэтому при сложении этих колебаний, они должны взаимно ослаблять друг друга:
,
где A – амплитуда результирующего колебания, – амплитуда колебаний, возбуждаемая i-й зоной Френеля.
Величина зависит от площади зоны и угла между нормалью к поверхности и прямой, направленной в точку M.
Площадь одной зоны
.
Отсюда видно, что площадь зоны Френеля не зависит от номера зоны i. Это значит, что при не слишком больших i площади соседних зон одинаковы.
В то же время с увеличением номера зоны возрастает угол и, следовательно, уменьшается интенсивность излучения зоны в направлении точки M, т.е. уменьшается амплитуда . Она уменьшается также из-за увеличения расстояния до точки M:
.
Общее число зон Френеля, умещающихся на части сферы, обращенной в сторону точки M, очень велико: при , , число зон , а радиус первой зоны .
Отсюда следует, что углы между нормалью к зоне и направлением на точку M у соседних зон примерно равны, т.е. что амплитуды волн, приходящих в точку M от соседних зон, примерно равны.
Световая волна распространяется прямолинейно. Фазы колебаний, возбуждаемые соседними зонами, отличаются на π. Поэтому в качестве допустимого приближения можно считать, что амплитуда колебания от некоторой m-й зоны равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.
.
Так как площади соседних зон одинаковы, то выражения в скобках равны нулю, значит результирующая амплитуда .
Интенсивность излучения .
Таким образом, результирующая амплитуда, создаваемая в некоторой точке M всей сферической поверхностью, равна половине амплитуды, создаваемой одной лишь центральной зоной, а интенсивность .
Так как радиус центральной зоны мал ( ), следовательно, можно считать, что свет от точки P до точки M распространяется прямолинейно.
Если на пути волны поставить непрозрачный экран с отверстием, оставляющим открытой только центральную зону Френеля, то амплитуда в точке M будет равна . Соответственно, интенсивность в точке M будет в 4 раза больше, чем при отсутствии экрана (т.к. ). Интенсивность света увеличивается, если закрыть все четные зоны.
Таким образом, принцип Гюйгенса–Френеля позволяет объяснить прямолинейное распространение света в однородной среде.
Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонные пластинки – система чередующихся прозрачных и непрозрачных колец.
Опыт подтверждает, что с помощью зонных пластинок можно увеличить освещенность в точке М, подобно собирающей линзе.
Объяснение: