Задание №1
Вариант 1
1\\\\x\in (1; \infty)" alt="3(1-x) + 2(2-2x) < 0\\\\3 - 3x + 4 - 4x < 0\\\\-7x < -7\\\\x > 1\\\\x\in (1; \infty)" align="absmiddle" class="latex-formula">
Вариант 2
Задание №2
Вариант 1
1} \right." alt="\left \{ {{x- \frac x4 \geq2} \atop {\frac{x-1}{2}+\frac{x-2}{3} > 1} \right." align="absmiddle" class="latex-formula">
Решаем каждое уравнение по отдельности, а потом найдём общее решение.
1\\\\ 3x - 3 + 2x - 4 > 6\\\\5x > 13 \\\\x > 2\frac{3}{5}" alt="\frac{x-1}{2} + \frac{x-2}{3} > 1\\\\ 3x - 3 + 2x - 4 > 6\\\\5x > 13 \\\\x > 2\frac{3}{5}" align="absmiddle" class="latex-formula">
2\frac35} \right. \\\\x\in [2\frac23; \infty)" alt="\left \{ {{x\geq2\frac{2}{3} } \atop {x>2\frac35} \right. \\\\x\in [2\frac23; \infty)" align="absmiddle" class="latex-formula">
Вариант 2
x} \atop {x - \frac{x-4}{5} > 1} \right." alt="\left \{ {{1 - \frac x4 > x} \atop {x - \frac{x-4}{5} > 1} \right." align="absmiddle" class="latex-formula">
Решаем каждое уравнение по отдельности, а потом найдём общее решение.
1\\\\5x - x + 4 > 5\\\\4x> 1\\\\x > \frac14" alt="x - \frac{x-4}{5} > 1\\\\5x - x + 4 > 5\\\\4x> 1\\\\x > \frac14" align="absmiddle" class="latex-formula">
\frac14} \right. \\\\x\in (\frac14; \frac45)" alt="\left \{ {{x\leq\frac{4}{5}} \atop {x>\frac14} \right. \\\\x\in (\frac14; \frac45)" align="absmiddle" class="latex-formula">
Задание №3
Вариант 1
Вариант 2
-4} \atop {1-x < 5}} \right. \\\\ \left \{ {{-x > -4 - 1} \atop {-x < 5 - 1}} \right.\\\\\left \{ {{-x > -5} \atop {-x < 4}} \right. \\\\ \left \{ {{x < 5} \atop {x > -4} \right. \\\\ x \in [-4; 5]" alt="-4 < 1 - x < 5\\\\\left \{ {{1-x > -4} \atop {1-x < 5}} \right. \\\\ \left \{ {{-x > -4 - 1} \atop {-x < 5 - 1}} \right.\\\\\left \{ {{-x > -5} \atop {-x < 4}} \right. \\\\ \left \{ {{x < 5} \atop {x > -4} \right. \\\\ x \in [-4; 5]" align="absmiddle" class="latex-formula">