Найти экстремум функции z=3-2x-y при условии x^2+2y^2=5.

0 голосов
63 просмотров

Найти экстремум функции z=3-2x-y при условии x^2+2y^2=5.


Математика (12 баллов) | 63 просмотров
Дан 1 ответ
0 голосов

Используем метод множителей Лагранжа

image\lambda_{1,2}=\pm \dfrac{3}{2\sqrt{10}}\\" alt="L=3-2x-y+\lambda(x^2+2y^2-5)\\ L'_x=-2+2\lambda x\\ L'_y=-1+4\lambda y\\ \begin{equation*} \begin{cases} L'_x=0, \\ L'_y=0,\\ x^2+2y^2-5=0. \end{cases}\end{equation*} \Rightarrow \begin{equation*} \begin{cases} x=\dfrac{1}{\lambda }\\ y=\dfrac{1}{4\lambda },\\ x^2+2y^2-5=0. \end{cases}\end{equation*} \\ \Rightarrow \dfrac{1}{\lambda ^2}+2*\dfrac{1}{16\lambda ^2}=5\Rightarrow \lambda^2=\dfrac{9}{40}=>\lambda_{1,2}=\pm \dfrac{3}{2\sqrt{10}}\\" align="absmiddle" class="latex-formula">

Тогда точки, подозрительные на экстремум -

M_1(\dfrac{2\sqrt{10}}{3};\dfrac{\sqrt{10}}{6}),M_2(-\dfrac{2\sqrt{10}}{3};-\dfrac{\sqrt{10}}{6})

d^2L=L''_{xx}(dx)^2+2L''_{xy}dxdy+L''_{yy}(dy)^2=2\lambda(dx)^2+2*0dxdy+4\lambda(dy)^2=2\lambda(dx)^2+4\lambda(dy)^2

image0" alt="(d^2L)|_{M_1}=(2(dx)^2+4(dy)^2)*\dfrac{3}{2\sqrt{10}}>0" align="absmiddle" class="latex-formula"> , а значит в точке M1 достигается условный минимум

(d^2L)|_{M_2}=(2(dx)^2+4(dy)^2)*(-\dfrac{3}{2\sqrt{10}})<0 , а значит в точке M2 достигается условный максимум

(11.3k баллов)