Ответ:
Объяснение: 1. =13x+C
2. =x⁴/4+C
3. =ln|x|+C
4. =-cosx+C
5. =5·eˣ+C
6. =9sinx+C
7. =1/4∫(4x-3)⁵d(4x-3)=(1/4)·(1/6)(4x-3)⁶=(1/24)·(4x-3)⁶+C
8. =∫4x⁴dx+∫6x²dx-∫8x⁷dx=(4/5)x⁵+(6/3)x³-(8/8)x⁸=(4/5)x⁵+2x³-x⁸+C
9. =(1/6)∫sin(6x-π/3)d(6x-π/3)=(-1/6)cos(6x-π/3)+C
10. =∫3cos5xdx-∫7√xdx+∫e⁸ˣ⁺¹dx=3∫(1/5)cos5xd(5x)-7·(2/3)·√x³+(1/8)·e⁸ˣ⁺¹=
(3/5)sin5x-(14/3)√x³+(1/8)·e⁸ˣ⁺¹+C, C=const