Ответ:Ответ: НОД (8 ; 3 ; 12)
Решение:
1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
8 - составное число
3 - простое число
12 - составное число
Разложим число 8 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
8 : 2 = 4 - делится на простое число 2
4 : 2 = 2 - делится на простое число 2.
Завершаем деление, так как 2 простое число
Число 3 простое и само является своим разложением.
Разложим число 12 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число