Ответ:
Пошаговое объяснение:
AB = BC
AC = 10
sin∠BAC = ![\frac{12}{13} \frac{12}{13}](https://tex.z-dn.net/?f=%5Cfrac%7B12%7D%7B13%7D)
AB = ?
Решение:
ABC равнобедренный треугольник, так как AB = BC ⇒ AD = DC = AC/2 ⇒ AD = DC = 10/2 = 5
Рассмотрим прямоугольный треугольник ADB (∠ADB = 90°).
∠BAC = ∠BAD ⇒ sin∠BAD = ![\frac{12}{13} \frac{12}{13}](https://tex.z-dn.net/?f=%5Cfrac%7B12%7D%7B13%7D)
cos∠BAD =
= ![\sqrt{1- (\frac{12}{13}) ^{2} } =\sqrt{1-\frac{144}{169}} = \sqrt{\frac{169}{169} - \frac{144}{169} } = \sqrt{\frac{25}{169} } = \frac{5}{13} \sqrt{1- (\frac{12}{13}) ^{2} } =\sqrt{1-\frac{144}{169}} = \sqrt{\frac{169}{169} - \frac{144}{169} } = \sqrt{\frac{25}{169} } = \frac{5}{13}](https://tex.z-dn.net/?f=%5Csqrt%7B1-%20%28%5Cfrac%7B12%7D%7B13%7D%29%20%5E%7B2%7D%20%7D%20%3D%5Csqrt%7B1-%5Cfrac%7B144%7D%7B169%7D%7D%20%20%3D%20%5Csqrt%7B%5Cfrac%7B169%7D%7B169%7D%20-%20%5Cfrac%7B144%7D%7B169%7D%20%7D%20%20%3D%20%5Csqrt%7B%5Cfrac%7B25%7D%7B169%7D%20%7D%20%3D%20%5Cfrac%7B5%7D%7B13%7D)
cos∠BAD =
⇒ ![\frac{5}{13} = \frac{5}{AB} \frac{5}{13} = \frac{5}{AB}](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B13%7D%20%3D%20%5Cfrac%7B5%7D%7BAB%7D)
![AB = \frac{5}{\frac{5}{13} } = 13 AB = \frac{5}{\frac{5}{13} } = 13](https://tex.z-dn.net/?f=AB%20%3D%20%5Cfrac%7B5%7D%7B%5Cfrac%7B5%7D%7B13%7D%20%7D%20%20%3D%2013)