Log3 ^2x +log3x=6 решить уравнение ​

0 голосов
105 просмотров

Log3 ^2x +log3x=6 решить уравнение ​


Математика (24 баллов) | 105 просмотров
Дан 1 ответ
0 голосов

image 0 \\ log_{3}(x) = t \\ {t}^{2} + t - 6 = 0 \\ t_{1} = - 3 \\ t_{2} = 2 \\ \left[ \begin{gathered} log_{3}(x) = - 3 \\ log_{3}(x) = 2 \end{gathered}

\right. \\ \left[ \begin{gathered} x = \frac{1}{27} \\ x = 9 \end{gathered} \right. " alt=" log_{3}^{2} (x) + log_{3}(x) = 6, \: x > 0 \\ log_{3}(x) = t \\ {t}^{2} + t - 6 = 0 \\ t_{1} = - 3 \\ t_{2} = 2 \\ \left[ \begin{gathered} log_{3}(x) = - 3 \\ log_{3}(x) = 2 \end{gathered}

\right. \\ \left[ \begin{gathered} x = \frac{1}{27} \\ x = 9 \end{gathered} \right. " align="absmiddle" class="latex-formula">

(3.3k баллов)