Решите уравнение:sinxsin2x = cosx

0 голосов
64 просмотров

Решите уравнение:sinxsin2x = cosx


Математика (33 баллов) | 64 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Ответ: x1=π*n+π/2, x2=(-1)^k*π/4+π*k, x3=(-1)^(m+1)*π/4+π*m, где k,n,m∈Z.

Пошаговое объяснение:

Так как sin(2*x)=2*sin(x)*cos(x), поэтому данное уравнение можно переписать в виде: cos(x)*[2*sin²(x)-1]=0. Отсюда либо cos(x)=0, либо 2*sin²(x)-1=0. Решая уравнение cos(x)=0, находим x1=π*(2*n+1)/2=π*n+π/2, где n∈Z. Уравнение 2*sin²(x)-1=0, или равносильное ему уравнение sin²(x)=1/2, распадается на два: sin(x)=√2/2 и sin(x)=-√2/2. Первое имеет решения x2=(-1)^k*π/4+π*k, где k∈Z. Второе имеет решения x3=(-1)^m*(-π/4)+π*m=(-1)^(m+1)*π/4+π*m, где m∈Z.

(90.4k баллов)