Реши систему неравенств: {−x>x−2(5x+1)12−x≥(1+5x)2−25x2 Выбери ответ системы неравенств: x∈(−0,25;1] x∈(+∞;−∞) x∈[−0,25;1) x∈[−0,25;1] x∈(−0,25;1) x∈(−∞;1] x∈(−0,25;+∞) Выбери целые ответы системы неравенств: x=0,5 x=0,25 x=1 x∈R x∈∅ x=0 x=0,2 x=−1
x-2(5x+1)} \atop {12-x\geq(1+5x)^{2}-25x^{2}}} \right.\\\\\left \{ {{-x>x-10x-2} \atop {12-x\geq1+10x+25x^{2}-25x^{2}}} \right.\\\\\left \{ {{-x+9x>-2} \atop {-x-10x\geq1-12 }} \right.\\\\\left \{ {{8x>-2} \atop {-11x\geq-11 }} \right.\\\\\left \{ {{x>-0,25} \atop {x\leq1 }} \right. \\\\x\in(-0,25;1]" alt="\left \{ {{-x>x-2(5x+1)} \atop {12-x\geq(1+5x)^{2}-25x^{2}}} \right.\\\\\left \{ {{-x>x-10x-2} \atop {12-x\geq1+10x+25x^{2}-25x^{2}}} \right.\\\\\left \{ {{-x+9x>-2} \atop {-x-10x\geq1-12 }} \right.\\\\\left \{ {{8x>-2} \atop {-11x\geq-11 }} \right.\\\\\left \{ {{x>-0,25} \atop {x\leq1 }} \right. \\\\x\in(-0,25;1]" align="absmiddle" class="latex-formula">
Целые ответы системы неравенств : 0 и 1