Где и для чего используется среднее арифметическое чисел?​

0 голосов
25 просмотров

Где и для чего используется среднее арифметическое чисел?​


Математика (28 баллов) | 25 просмотров
Дан 1 ответ
0 голосов

Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции. ВведениеПравить

Обозначим множество чисел X = (x1, x2, …, xn), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (
x
¯
{\bar {x}}, произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E{xi} есть математическое ожидание этой выборки.

На практике разница между μ и
x
¯
{\bar {x}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда
x
¯
{\bar {x}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

x
¯
=
1
n

i
=
1
n
x
i
=
1
n
(
x
1
+

+
x
n
)
.
{\bar {x}}={\frac {1}{n}}\sum _{{i=1}}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).
Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

ПримерыПравить
Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3:
x
1
+
x
2
+
x
3
3
.
{\frac {x_{1}+x_{2}+x_{3}}{3}}.
Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4:
x
1
+
x
2
+
x
3
+
x
4
4
.
{\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.
Непрерывная случайная величинаПравить
Если существует интеграл от некоторой функции
f
(
x
)
f(x) одной переменной, то среднее арифметическое этой функции на отрезке
[
a
;
b
]
[a;b] определяется через определённый интеграл:

f
(
x
)
¯
[
a
;
b
]
=
1
b

a

a
b
f
(
x
)
d
x
.
{\displaystyle {\overline {f(x)}}_{[a;b]}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx.}
Здесь подразумевается, что
b
>
a
.
{\displaystyle b>a.}

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины. НаправленияПравить
Основная статья: Статистика направлений
При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно
1

+
359

2
=
{\frac {1^{\circ }+359^{\circ }}{2}}=180°. Это число неверно по двум причинам.

Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться:
1

+
(

1

)
2
=
0

{\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ },
1

+
719

2
=
360

{\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }.
Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значением, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
число 1° отклоняется от 0° всего на 1°;
число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.
Среднее значение для циклической переменной, рассчитанное .

(34 баллов)