Задача: Даны координаты вершин пирамиды A₁A₂A₃A₄: A₁A₂A₃A₄: A₁(7, 2, 4), A₂(7, −1, −2), A₃(3, 3, 1), A₄(−4, 2, 1). Найти угол между ребрами A₁A₂ и A₁A₄.
··································································
![A_1A_2 = \sqrt{(7-7)^2+(-1-2)^2 + (-2-4)^2} = \sqrt{9+36} =\sqrt{45}\\A_2A_4 = \sqrt{(-4-7)^2+(2-(-1))^2 + (1-(-2))^2} = \sqrt{121+9+9} =\sqrt{139}\\A_1A_4 = \sqrt{(-4-7)^2+(2-2)^2 + (1-4)^2} = \sqrt{121+9} =\sqrt{130}\\\\ A_1A_2 = \sqrt{(7-7)^2+(-1-2)^2 + (-2-4)^2} = \sqrt{9+36} =\sqrt{45}\\A_2A_4 = \sqrt{(-4-7)^2+(2-(-1))^2 + (1-(-2))^2} = \sqrt{121+9+9} =\sqrt{139}\\A_1A_4 = \sqrt{(-4-7)^2+(2-2)^2 + (1-4)^2} = \sqrt{121+9} =\sqrt{130}\\\\](https://tex.z-dn.net/?f=A_1A_2%20%3D%20%5Csqrt%7B%287-7%29%5E2%2B%28-1-2%29%5E2%20%2B%20%28-2-4%29%5E2%7D%20%3D%20%5Csqrt%7B9%2B36%7D%20%3D%5Csqrt%7B45%7D%5C%5CA_2A_4%20%3D%20%5Csqrt%7B%28-4-7%29%5E2%2B%282-%28-1%29%29%5E2%20%2B%20%281-%28-2%29%29%5E2%7D%20%3D%20%5Csqrt%7B121%2B9%2B9%7D%20%3D%5Csqrt%7B139%7D%5C%5CA_1A_4%20%3D%20%5Csqrt%7B%28-4-7%29%5E2%2B%282-2%29%5E2%20%2B%20%281-4%29%5E2%7D%20%3D%20%5Csqrt%7B121%2B9%7D%20%3D%5Csqrt%7B130%7D%5C%5C%5C%5C)
![cos \angle A_2A_1A_4 = \frac{(A_1A_4)^2+(A_1A_2)^2-(A_2A_4)^2}{2\cdot (A_1A_4)\cdot (A_1A_2) }\\\\cos \angle A_2A_1A_4 = \frac{(\sqrt{130} )^2+(\sqrt{45})^2-(\sqrt{139})^2}{2\cdot \sqrt{130}\cdot \sqrt{45} } =\\\\= \frac{130+45-139}{2\sqrt{5\cdot 26} \cdot \sqrt{5\cdot 9}} =\frac{36}{30\sqrt{26}} =\frac{6}{5\sqrt{26}} \approx 0,235 \approx 76 \° cos \angle A_2A_1A_4 = \frac{(A_1A_4)^2+(A_1A_2)^2-(A_2A_4)^2}{2\cdot (A_1A_4)\cdot (A_1A_2) }\\\\cos \angle A_2A_1A_4 = \frac{(\sqrt{130} )^2+(\sqrt{45})^2-(\sqrt{139})^2}{2\cdot \sqrt{130}\cdot \sqrt{45} } =\\\\= \frac{130+45-139}{2\sqrt{5\cdot 26} \cdot \sqrt{5\cdot 9}} =\frac{36}{30\sqrt{26}} =\frac{6}{5\sqrt{26}} \approx 0,235 \approx 76 \°](https://tex.z-dn.net/?f=cos%20%5Cangle%20A_2A_1A_4%20%3D%20%5Cfrac%7B%28A_1A_4%29%5E2%2B%28A_1A_2%29%5E2-%28A_2A_4%29%5E2%7D%7B2%5Ccdot%20%28A_1A_4%29%5Ccdot%20%28A_1A_2%29%20%7D%5C%5C%5C%5Ccos%20%5Cangle%20A_2A_1A_4%20%3D%20%5Cfrac%7B%28%5Csqrt%7B130%7D%20%29%5E2%2B%28%5Csqrt%7B45%7D%29%5E2-%28%5Csqrt%7B139%7D%29%5E2%7D%7B2%5Ccdot%20%5Csqrt%7B130%7D%5Ccdot%20%5Csqrt%7B45%7D%20%7D%20%3D%5C%5C%5C%5C%3D%20%5Cfrac%7B130%2B45-139%7D%7B2%5Csqrt%7B5%5Ccdot%2026%7D%20%5Ccdot%20%5Csqrt%7B5%5Ccdot%209%7D%7D%20%3D%5Cfrac%7B36%7D%7B30%5Csqrt%7B26%7D%7D%20%3D%5Cfrac%7B6%7D%7B5%5Csqrt%7B26%7D%7D%20%5Capprox%200%2C235%20%5Capprox%2076%20%5C%C2%B0)
Ответ: Угол между ребрами A₁A₂ и A₁A₄ равен
76°.