Заменим cosX=кореньиз(1-sin(^2)X)
Значит, уравнение принимает вид:
кореньиз(1-sin(^2)X) =5-5sinX
Возводим обе части в квадрат:
1- sin(^2)X=25-50sinX+25sin(^2)X
26sin(^2)X - 50sinX+24=0
13sin(^2)X - 25sinX+12=0
Пусть sinX=t, |t|<=1</p>
13t^2 - 25t+12=0\
D=625-624=1
t1=(25+1)/26 =1,
t2=(25-1)/26=12/13
Вернемся к исходной переменной
sinX=1 или sinX=12/13
x=П/2+ 2Пк, к принадлежит Z
Х=(-1)^k*arcsin(12/13)+Пк, к принадлежит Z
Ответ: П/2+ 2Пк,(-1)^k*arcsin(12/13)+Пк, к принадлежит Z