![(y^2-2xy)dx+x^2dy=0 (y^2-2xy)dx+x^2dy=0](https://tex.z-dn.net/?f=%28y%5E2-2xy%29dx%2Bx%5E2dy%3D0)
Разделим на
:
![y^2-2xy+x^2\cdot\dfrac{dy}{dx}= 0 y^2-2xy+x^2\cdot\dfrac{dy}{dx}= 0](https://tex.z-dn.net/?f=y%5E2-2xy%2Bx%5E2%5Ccdot%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%200)
Разделим на
:
![\dfrac{y^2}{x^2} -2\cdot\dfrac{y}{x} +\dfrac{dy}{dx}= 0 \dfrac{y^2}{x^2} -2\cdot\dfrac{y}{x} +\dfrac{dy}{dx}= 0](https://tex.z-dn.net/?f=%5Cdfrac%7By%5E2%7D%7Bx%5E2%7D%20-2%5Ccdot%5Cdfrac%7By%7D%7Bx%7D%20%2B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%200)
![\left(\dfrac{y}{x}\right)^2 -2\cdot\dfrac{y}{x} +y'= 0 \left(\dfrac{y}{x}\right)^2 -2\cdot\dfrac{y}{x} +y'= 0](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7By%7D%7Bx%7D%5Cright%29%5E2%20-2%5Ccdot%5Cdfrac%7By%7D%7Bx%7D%20%2By%27%3D%200)
Замена:
![\dfrac{y}{x} =t \dfrac{y}{x} =t](https://tex.z-dn.net/?f=%5Cdfrac%7By%7D%7Bx%7D%20%3Dt)
![\Rightarrow y=tx \Rightarrow y=tx](https://tex.z-dn.net/?f=%5CRightarrow%20y%3Dtx)
![\Rightarrow y'=t'x+tx'=t'x+t \Rightarrow y'=t'x+tx'=t'x+t](https://tex.z-dn.net/?f=%5CRightarrow%20y%27%3Dt%27x%2Btx%27%3Dt%27x%2Bt)
Получим уравнение:
![t^2 -2t +t'x+t= 0 t^2 -2t +t'x+t= 0](https://tex.z-dn.net/?f=t%5E2%20-2t%20%2Bt%27x%2Bt%3D%200)
![t^2 -t +t'x= 0 t^2 -t +t'x= 0](https://tex.z-dn.net/?f=t%5E2%20-t%20%2Bt%27x%3D%200)
![t'x= t-t^2 t'x= t-t^2](https://tex.z-dn.net/?f=t%27x%3D%20t-t%5E2)
![x\cdot\dfrac{dt}{dx} = t-t^2 x\cdot\dfrac{dt}{dx} = t-t^2](https://tex.z-dn.net/?f=x%5Ccdot%5Cdfrac%7Bdt%7D%7Bdx%7D%20%3D%20t-t%5E2)
![\dfrac{dt}{ t-t^2} =\dfrac{dx}{x} \dfrac{dt}{ t-t^2} =\dfrac{dx}{x}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdt%7D%7B%20t-t%5E2%7D%20%3D%5Cdfrac%7Bdx%7D%7Bx%7D)
![\int\dfrac{dt}{ t-t^2} =\int\dfrac{dx}{x} \int\dfrac{dt}{ t-t^2} =\int\dfrac{dx}{x}](https://tex.z-dn.net/?f=%5Cint%5Cdfrac%7Bdt%7D%7B%20t-t%5E2%7D%20%3D%5Cint%5Cdfrac%7Bdx%7D%7Bx%7D)
Чтобы найти интеграл, стоящий в левой части, подынтегральную дробь представим в виде суммы составляющих:
![\dfrac{1}{ t-t^2}=\dfrac{A}{t} +\dfrac{B}{1-t} =\dfrac{A(1-t)+Bt}{t(1-t)} =\dfrac{A-At+Bt}{t(1-t)} =\dfrac{(B-A)T+A}{t(1-t)} \dfrac{1}{ t-t^2}=\dfrac{A}{t} +\dfrac{B}{1-t} =\dfrac{A(1-t)+Bt}{t(1-t)} =\dfrac{A-At+Bt}{t(1-t)} =\dfrac{(B-A)T+A}{t(1-t)}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B%20t-t%5E2%7D%3D%5Cdfrac%7BA%7D%7Bt%7D%20%2B%5Cdfrac%7BB%7D%7B1-t%7D%20%3D%5Cdfrac%7BA%281-t%29%2BBt%7D%7Bt%281-t%29%7D%20%3D%5Cdfrac%7BA-At%2BBt%7D%7Bt%281-t%29%7D%20%3D%5Cdfrac%7B%28B-A%29T%2BA%7D%7Bt%281-t%29%7D)
Дроби равны, знаменатели равны. Значит, равны и числители:
![1=(B-A)t+A 1=(B-A)t+A](https://tex.z-dn.net/?f=1%3D%28B-A%29t%2BA)
Условие равенства:
![\begin{cases} A=1 \\ B-A=0 \end{cases} \begin{cases} A=1 \\ B-A=0 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20A%3D1%20%5C%5C%20B-A%3D0%20%5Cend%7Bcases%7D)
![\begin{cases} A=1 \\ B=A=1 \end{cases} \begin{cases} A=1 \\ B=A=1 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20A%3D1%20%5C%5C%20B%3DA%3D1%20%5Cend%7Bcases%7D)
Значит, дробь раскладывается на составляющие следующим образом:
![\dfrac{1}{ t-t^2}=\dfrac{1}{t} +\dfrac{1}{1-t} \dfrac{1}{ t-t^2}=\dfrac{1}{t} +\dfrac{1}{1-t}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B%20t-t%5E2%7D%3D%5Cdfrac%7B1%7D%7Bt%7D%20%2B%5Cdfrac%7B1%7D%7B1-t%7D)
Возвращаемся к интегрированию:
![\int\dfrac{dt}{ t-t^2} =\int\dfrac{dx}{x} \int\dfrac{dt}{ t-t^2} =\int\dfrac{dx}{x}](https://tex.z-dn.net/?f=%5Cint%5Cdfrac%7Bdt%7D%7B%20t-t%5E2%7D%20%3D%5Cint%5Cdfrac%7Bdx%7D%7Bx%7D)
![\int\dfrac{dt}{ t}+\int\dfrac{dt}{1-t} =\int\dfrac{dx}{x} \int\dfrac{dt}{ t}+\int\dfrac{dt}{1-t} =\int\dfrac{dx}{x}](https://tex.z-dn.net/?f=%5Cint%5Cdfrac%7Bdt%7D%7B%20t%7D%2B%5Cint%5Cdfrac%7Bdt%7D%7B1-t%7D%20%3D%5Cint%5Cdfrac%7Bdx%7D%7Bx%7D)
Для второй дроби выполним подведение под знак дифференциала:
![\int\dfrac{dt}{ t}-\int\dfrac{d(1-t)}{1-t} =\int\dfrac{dx}{x} \int\dfrac{dt}{ t}-\int\dfrac{d(1-t)}{1-t} =\int\dfrac{dx}{x}](https://tex.z-dn.net/?f=%5Cint%5Cdfrac%7Bdt%7D%7B%20t%7D-%5Cint%5Cdfrac%7Bd%281-t%29%7D%7B1-t%7D%20%3D%5Cint%5Cdfrac%7Bdx%7D%7Bx%7D)
Интегрируем:
![\ln|t|-\ln|1-t|=\ln|x|-\ln|C| \ln|t|-\ln|1-t|=\ln|x|-\ln|C|](https://tex.z-dn.net/?f=%5Cln%7Ct%7C-%5Cln%7C1-t%7C%3D%5Cln%7Cx%7C-%5Cln%7CC%7C)
![\ln\left|\dfrac{t}{1-t}\right|=\ln\left|\dfrac{x}{C}\right| \ln\left|\dfrac{t}{1-t}\right|=\ln\left|\dfrac{x}{C}\right|](https://tex.z-dn.net/?f=%5Cln%5Cleft%7C%5Cdfrac%7Bt%7D%7B1-t%7D%5Cright%7C%3D%5Cln%5Cleft%7C%5Cdfrac%7Bx%7D%7BC%7D%5Cright%7C)
![\dfrac{t}{1-t}=\dfrac{x}{C} \dfrac{t}{1-t}=\dfrac{x}{C}](https://tex.z-dn.net/?f=%5Cdfrac%7Bt%7D%7B1-t%7D%3D%5Cdfrac%7Bx%7D%7BC%7D)
Обратная замена:
![\dfrac{\frac{y}{x} }{1-\frac{y}{x} }=\dfrac{x}{C} \dfrac{\frac{y}{x} }{1-\frac{y}{x} }=\dfrac{x}{C}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cfrac%7By%7D%7Bx%7D%20%7D%7B1-%5Cfrac%7By%7D%7Bx%7D%20%7D%3D%5Cdfrac%7Bx%7D%7BC%7D)
![\dfrac{y }{x-y }=\dfrac{x}{C} \dfrac{y }{x-y }=\dfrac{x}{C}](https://tex.z-dn.net/?f=%5Cdfrac%7By%20%7D%7Bx-y%20%7D%3D%5Cdfrac%7Bx%7D%7BC%7D)
![\dfrac{x-y }{y }=\dfrac{C}{x} \dfrac{x-y }{y }=\dfrac{C}{x}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx-y%20%7D%7By%20%7D%3D%5Cdfrac%7BC%7D%7Bx%7D)
![\dfrac{x }{y }-1=\dfrac{C}{x} \dfrac{x }{y }-1=\dfrac{C}{x}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%20%7D%7By%20%7D-1%3D%5Cdfrac%7BC%7D%7Bx%7D)
![\dfrac{x }{y }=1+\dfrac{C}{x} \dfrac{x }{y }=1+\dfrac{C}{x}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%20%7D%7By%20%7D%3D1%2B%5Cdfrac%7BC%7D%7Bx%7D)
![\dfrac{x }{y }=\dfrac{x+C}{x} \dfrac{x }{y }=\dfrac{x+C}{x}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%20%7D%7By%20%7D%3D%5Cdfrac%7Bx%2BC%7D%7Bx%7D)
![\boxed{y=\dfrac{x^2}{x+C}} \boxed{y=\dfrac{x^2}{x+C}}](https://tex.z-dn.net/?f=%5Cboxed%7By%3D%5Cdfrac%7Bx%5E2%7D%7Bx%2BC%7D%7D)