║ДАЮ 20 БАЛЛОВ!!! СРОЧНО!!!║ Дан параллелограмм с длинами сторон 12 и 8. Биссектрисы...

0 голосов
297 просмотров

║ДАЮ 20 БАЛЛОВ!!! СРОЧНО!!!║ Дан параллелограмм с длинами сторон 12 и 8. Биссектрисы его углов при пересечении образуют четырёхугольник. Чему равны длины диагоналей этого четырёхугольника?


Геометрия (176 баллов) | 297 просмотров
Дан 1 ответ
0 голосов

Ответ:

Дан параллелограмм ABCD с длинами сторон 12 и 8. Биссектрисы его углов при пересечении образуют четырехугольник. Чему равна длина диагоналей этого четырехугольника?

-----------------

 По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник.    Обозначим его вершины К, L, M и N.

Биссектрисы параллелограмма, являясь секущими,  отсекают от него равнобедренные треугольники  ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>

АВ=BQ=AT=CD=CR=DS=8   Тогда ВR=12-CR=4.  Аналогично  длина отрезков  QC,, DT,, AS равна 4.

Отрезки   QR и TS равны 12-2•4=4.  

По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и  ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.

В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND

Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD,  а BR║TD как лежащие на параллельных сторонах ABCD.

Из доказанного выше BL=RN. ⇒   BL=RN. ⇒

Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4

LN - диагональ прямоугольника  KLMN. Диагонали прямоугольника равны.

КМ=LN=4 (ед. длины)

Подробнее - на Znanija.com - znanija.com/task/29327070#readmore

Объяснение:

(66 баллов)