В параллелограмме биссектриса острого угла, который равен 30 градусов, делит его сторону на отрезки 12 см и 8 см, начиная от вершины тупого угла. Найдите площадь параллелограмма.
Объяснение:
АВСМ-параллелограмм ,∠А=30° ,АК-биссектриса, ВК=12 см, КС=8 см.
АК- биссектриса, значит ∠ВАК=∠МАК=15°
Т.к. АМ║ВС , АК-секущая , то накрест лежащие углы равны ∠МАК=∠ВКА=15°⇒ΔАВК-равнобедренный по признаку равнобедренного треугольника ⇒АВ=ВК=12 см.
ВС=12+8=20 см, ВС=АМ=20см.
S=АВ*АМ*sin∠ВАМ,
S=12*20*sin30°,
S=240*(1/2)
S=120 см²