Складіть рівняння дотічної до графіка функції f(x)=x^3-5x в точці x0=2

0 голосов
30 просмотров

Складіть рівняння дотічної до графіка функції f(x)=x^3-5x в точці x0=2


Алгебра (16 баллов) | 30 просмотров
Дан 1 ответ
0 голосов

Знайдемо значення функції в точці x_0:

f(x_0)=f(2)=2^3-5 \cdot 2=8-10=-2

Знайдемо похідну:

f'(x)=3x^2-5

Знайдемо значення похідної в точці x_0:

f'(x_0)=f'(2)=3 \cdot 2^2-5=7

Загальне рівняння дотичної має вигляд:

y=f'(x)(x-x_0)+f(x_0)

Підставимо відомі значення:

y=7(x-2)-2=7x-14-2=7x-16.

Відповідь: y=7x-16.


image
(9.6k баллов)