Сумма катетов прямоугольного треугольника равна 14 см. Найди длины катетов этого...

0 голосов
76 просмотров

Сумма катетов прямоугольного треугольника равна 14 см. Найди длины катетов этого треугольника, при которых площадь треугольника будет наибольшей. Катеты треугольника должны быть равны см и см (Пиши длины сторон в возрастающей последовательности). Максимальная площадь равна см².


Алгебра (15 баллов) | 76 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть один катет х, другой 14 - х.

Площадь S = (1/2)*x*(14 - x( = (-1/2)x² + 7x.

Производная этой функции S' = (-1/2)*2x + 7 = -x + 7.

Приравняем её нулю: -x + 7 = 0. х = 7.

Проверяем полученную критическую точку на экстремум.

х =   6   7    8

S' = 1    0    -1.

Как видим, в точке х = 7 максимум функции.

Ответ: длины катетов по 7 см.

максимальная площадь Sмакс = (1/2)*7*7 = 49/2 = 24,5 см².

 

(310k баллов)