Ответ:
1
Пошаговое объяснение:
1. a³-b³=(a-b)*(a²+ab+b²)
sin³19°-cos³19°=(sin19°-cos19°)*(sin²19°+sin19° * c0s19°+cos²19°)=(sin19°-cos18°)*(1+sin19° *cos19°)
2. sin²57°+sin²33°=sin57°+sin²(90°-57°)=sin²57°+cos²57°=1
3. 
=1/(sin19° *cos19°)
4. 
5. 
-sin19° *cos19°=1+sin19° *cos19°-sin18° *c0s19°=1