Проще всего доказать это с помощью сравнений. Хотя можно и с помощью метода математической индукции. Говорят, что целые числа a и b сравнимы по модулю k, если a-b делится на k, то есть a=b+kt, t - целое. Пишут так:
Есть теорема, которая утверждает, что сравнения можно складывать, вычитать, перемножать, возводить в натуральную степень. Имеем:


Это доказывает требуемое утверждение