Стороны основания прямого параллелепипеда 6 и 8, а диагональ параллелепипеда наклонена к...

0 голосов
113 просмотров

Стороны основания прямого параллелепипеда 6 и 8, а диагональ параллелепипеда наклонена к основанию под углом 45 и 30 градусов.Найдите длину этих диагоналей. плиииз​


Геометрия (15 баллов) | 113 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Ответ: 10 и 10√2

Объяснение: Параллелепипед АВСDD1А1В1С1 – прямой, ⇒ боковые ребра перпендикулярны основаниям.

Примем боковое ребро  равным а.

Диагональ В1D наклонена к плоскости основания под углом 45°⇒ ∠В1DВ=45°, В1D:sin45°=a√2

A1C наклонена к плоскости АВСD под ∠30° ⇒ АС:tg30°=a√3

В основании параллелепипеда - параллелограмм. В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон:

2•6*+2•8²=а²+3а² ⇒

²=200 ⇒ а=5√2

Тогда В1D=а√2=5√2•√2=10

A1C=AA1:sin30°=5√2…1/2=10√2


image
(228k баллов)