Решите уравнение с фото, пожалуйста

0 голосов
21 просмотров

Решите уравнение с фото, пожалуйста


image

Алгебра (32 баллов) | 21 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

image1~~~~\Rightarrow~~~x-1<1;~~~~x<2\\\\\boxed{x\in (-\infty;2)}" alt="7^x-2^{x+2}<5\cdot 7^{x-1}-2^{x-1}}~~~~|:2^{x-1}\\\\\dfrac{7\cdot 7^{x-1}}{2^{x-1}}-\dfrac{2^3\cdot 2^{x-1}}{2^{x-1}}<\dfrac{5\cdot 7^{x-1}}{2^{x-1}}-\dfrac{2^{x-1}}{2^{x-1}}\\\\7\cdot\Big(\dfrac 72\Big)^{x-1}-8<5\cdot \Big(\dfrac 72\Big)^{x-1}-1\\\\7\cdot\Big(\dfrac 72\Big)^{x-1}-5\cdot \Big(\dfrac 72\Big)^{x-1}<8-1\\\\2\cdot\Big(\dfrac 72\Big)^{x-1}<7;~~~~\Leftrightarrow~~~~~\Big(\dfrac 72\Big)^{x-1}<\dfrac 72\\\\\dfrac 72>1~~~~\Rightarrow~~~x-1<1;~~~~x<2\\\\\boxed{x\in (-\infty;2)}" align="absmiddle" class="latex-formula">

=========================================

12^x-2\cdot6^x\leq 36\cdot2^x-72\\2^x\cdot6^x-2\cdot6^x- 36\cdot2^x+72\leq 0\\6^x(2^x-2)-36(2^x-2)\leq 0\\(2^x-2)(6^x-36)\leq 0\\

Метод интервалов для неравенства

1)~2^x-2=0;~~~2^x=2;~~~x_1=1\\2)~6^x-36=0;~~~6^x=6^2;~~~x_2=2

+++++++++ [1] ------------ [2] ++++++++ > x

x ∈ [1; 2]

(41.1k баллов)