Число 40 представьте в виде суммы двух так,что сумма их кубов наибольшее.

0 голосов
30 просмотров

Число 40 представьте в виде суммы двух так,что сумма их кубов наибольшее.


Алгебра (84 баллов) | 30 просмотров
Дан 1 ответ
0 голосов

Ответ: если имелась в виду наименьшая суммма кубов произвольных чисел,то x=y=20. Если же имелась в виду наибольшая сумма кубов положительных висел,то x=0;y=40. Уточняйте условие, точно что то одно из этих 2-x вариантов.

Объяснение:

Решаю без производной:

x^3+y^3=(x+y)*(x^2-xy+y^2)=(x+y)*((x+y)^2-3xy) выражение максимально когда xy минимально.

Очевидно, что если числа могут быть отрицательны, то наибольшего значения суммы кубов не существует. Тк -3xy может быть бесконечно большим(xy может быть бесконечно большим по модулю, отрицательным числом). Существует два варианта:либо в условии говорилось о наименьшей сумме кубов, что произойдет, когда xy наибольшее,то есть когда x=y=20,следует из неравенства о средних. Либо имелась в виду сумма двух положительных слагаемых,в этом случае минимальное xy=0,то есть x=40 ;y=0.

(11.7k баллов)